Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ultrason Imaging ; 37(3): 179-204, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25252774

RESUMO

Transverse oscillation (TO) techniques have shown their potential for improving the accuracy of local motion estimation in the transverse direction (i.e., the direction perpendicular to the beam axis). The conventional design of TOs in linear geometry, which is based on the Fraunhofer approximation, relates point spread function (PSF) and apodization function through a Fourier transform. Motivated by the adaptation of TOs in echocardiography, we propose a specific beamforming approach based on back-propagation (BP) to build TOs in sector-shaped geometry. Numerical simulations and experimental data give a comparison between proposed and conventional beamforming for TOs. The accuracy is first quantified by comparing the generated and theoretical PSF using the root mean square error (RMSE) and shows that BP-based beamforming approximates the desired TOs more closely than the conventional approach. Motion estimation is then evaluated. The axial and lateral displacements are within the range [0-0.6] mm and [0°-6.4°], respectively, which correspond to 0.8 times the axial (0.73 mm) and lateral (8°) wavelengths. The result shows that the proposed method yields a clear improvement for lateral displacements, by reducing the error by 28.6% compared with Fourier transform-based beamforming, while maintaining the same error for axial motion estimation. Experimental measurements are discussed to complete this study and confirm that BP-based beamforming leads to better controlled TO images than conventional Fourier-based beamforming.


Assuntos
Ecocardiografia/métodos , Processamento de Imagem Assistida por Computador/métodos , Movimento (Física) , Algoritmos , Simulação por Computador , Ecocardiografia/estatística & dados numéricos , Processamento de Imagem Assistida por Computador/estatística & dados numéricos
2.
J Biomed Inform ; 52: 279-92, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25038553

RESUMO

This paper describes the creation of a comprehensive conceptualization of object models used in medical image simulation, suitable for major imaging modalities and simulators. The goal is to create an application ontology that can be used to annotate the models in a repository integrated in the Virtual Imaging Platform (VIP), to facilitate their sharing and reuse. Annotations make the anatomical, physiological and pathophysiological content of the object models explicit. In such an interdisciplinary context we chose to rely on a common integration framework provided by a foundational ontology, that facilitates the consistent integration of the various modules extracted from several existing ontologies, i.e. FMA, PATO, MPATH, RadLex and ChEBI. Emphasis is put on methodology for achieving this extraction and integration. The most salient aspects of the ontology are presented, especially the organization in model layers, as well as its use to browse and query the model repository.


Assuntos
Diagnóstico por Imagem , Processamento de Imagem Assistida por Computador/métodos , Internet , Semântica , Vocabulário Controlado , Encéfalo/patologia , Simulação por Computador , Humanos , Modelos Teóricos , Software
3.
Artigo em Inglês | MEDLINE | ID: mdl-38976463

RESUMO

Color Doppler echocardiography enables visualization of blood flow within the heart. However, the limited frame rate impedes the quantitative assessment of blood velocity throughout the cardiac cycle, thereby compromising a comprehensive analysis of ventricular filling. Concurrently, deep learning is demonstrating promising outcomes in post-processing of echocardiographic data for various applications. This work explores the use of deep learning models for intracardiac Doppler velocity estimation from a reduced number of filtered I/Q signals. We used a supervised learning approach by simulating patient-based cardiac color Doppler acquisitions and proposed data augmentation strategies to enlarge the training dataset. We implemented architectures based on convolutional neural networks. In particular, we focused on comparing the U-Net model and the recent ConvNeXt models, alongside assessing real-valued versus complex-valued representations. We found that both models outperformed the state-of-the-art autocorrelator method, effectively mitigating aliasing and noise. We did not observe significant differences between the use of real and complex data. Finally, we validated the models on in vitro and in vivo experiments. All models produced quantitatively comparable results to the baseline and were more robust to noise. ConvNeXt emerged as the sole model to achieve high-quality results on in vivo aliased samples. These results demonstrate the interest of supervised deep learning methods for Doppler velocity estimation from a reduced number of acquisitions.

4.
IEEE Trans Ultrason Ferroelectr Freq Control ; 70(12): 1761-1772, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37862280

RESUMO

High-quality ultrafast ultrasound imaging is based on coherent compounding from multiple transmissions of plane waves (PW) or diverging waves (DW). However, compounding results in reduced frame rate, as well as destructive interferences from high-velocity tissue motion if motion compensation (MoCo) is not considered. While many studies have recently shown the interest of deep learning for the reconstruction of high-quality static images from PW or DW, its ability to achieve such performance while maintaining the capability of tracking cardiac motion has yet to be assessed. In this article, we addressed such issue by deploying a complex-weighted convolutional neural network (CNN) for image reconstruction and a state-of-the-art speckle-tracking method. The evaluation of this approach was first performed by designing an adapted simulation framework, which provides specific reference data, i.e., high-quality, motion artifact-free cardiac images. The obtained results showed that, while using only three DWs as input, the CNN-based approach yielded an image quality and a motion accuracy equivalent to those obtained by compounding 31 DWs free of motion artifacts. The performance was then further evaluated on nonsimulated, experimental in vitro data, using a spinning disk phantom. This experiment demonstrated that our approach yielded high-quality image reconstruction and motion estimation, under a large range of velocities and outperforms a state-of-the-art MoCo-based approach at high velocities. Our method was finally assessed on in vivo datasets and showed consistent improvement in image quality and motion estimation compared to standard compounding. This demonstrates the feasibility and effectiveness of deep learning reconstruction for ultrafast speckle-tracking echocardiography.


Assuntos
Aprendizado Profundo , Ecocardiografia/métodos , Coração/diagnóstico por imagem , Ultrassonografia , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos
5.
Artigo em Inglês | MEDLINE | ID: mdl-34767508

RESUMO

Ultrafast ultrasound imaging remains an active area of interest in the ultrasound community due to its ultrahigh frame rates. Recently, a wide variety of studies based on deep learning have sought to improve ultrafast ultrasound imaging. Most of these approaches have been performed on radio frequency (RF) signals. However, in- phase/quadrature (I/Q) digital beamformers are now widely used as low-cost strategies. In this work, we used complex convolutional neural networks for reconstruction of ultrasound images from I/Q signals. We recently described a convolutional neural network architecture called ID-Net, which exploited an inception layer designed for reconstruction of RF diverging-wave ultrasound images. In the present study, we derive the complex equivalent of this network, i.e., complex-valued inception for diverging-wave network (CID-Net) that operates on I/Q data. We provide experimental evidence that CID-Net provides the same image quality as that obtained from RF-trained convolutional neural networks, i.e., using only three I/Q images, CID-Net produces high-quality images that can compete with those obtained by coherently compounding 31 RF images. Moreover, we show that CID-Net outperforms the straightforward architecture that consists of processing real and imaginary parts of the I/Q signal separately, which thereby indicates the importance of consistently processing the I/Q signals using a network that exploits the complex nature of such signals.


Assuntos
Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Processamento de Imagem Assistida por Computador/métodos , Ultrassonografia/métodos
6.
Artigo em Inglês | MEDLINE | ID: mdl-32286972

RESUMO

In recent years, diverging wave (DW) ultrasound imaging has become a very promising methodology for cardiovascular imaging due to its high temporal resolution. However, if they are limited in number, DW transmits provide lower image quality compared with classical focused schemes. A conventional reconstruction approach consists in summing series of ultrasound signals coherently, at the expense of frame rate, data volume, and computation time. To deal with this limitation, we propose a convolutional neural network (CNN) architecture, Inception for DW Network (IDNet), for high-quality reconstruction of DW ultrasound images using a small number of transmissions. In order to cope with the specificities induced by the sectorial geometry associated with DW imaging, we adopted the inception model composed of the concatenation of multiscale convolution kernels. Incorporating inception modules aims at capturing different image features with multiscale receptive fields. A mapping between low-quality images and corresponding high-quality compounded reconstruction was learned by training the network using in vitro and in vivo samples. The performance of the proposed approach was evaluated in terms of contrast ratio (CR), contrast-to-noise ratio (CNR), and lateral resolution (LR), and compared with standard compounding method and conventional CNN methods. The results demonstrated that our method could produce high-quality images using only 3 DWs, yielding an image quality equivalent to that obtained with compounding of 31 DWs and outperforming more conventional CNN architectures in terms of complexity, inference time, and image quality.

7.
IEEE Trans Image Process ; 18(6): 1179-91, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19403364

RESUMO

In the field of image segmentation, most level-set-based active-contour approaches take advantage of a discrete representation of the associated implicit function. We present in this paper a different formulation where the implicit function is modeled as a continuous parametric function expressed on a B-spline basis. Starting from the active-contour energy functional, we show that this formulation allows us to compute the solution as a restriction of the variational problem on the space spanned by the B-splines. As a consequence, the minimization of the functional is directly obtained in terms of the B-spline coefficients. We also show that each step of this minimization may be expressed through a convolution operation. Because the B-spline functions are separable, this convolution may in turn be performed as a sequence of simple 1-D convolutions, which yields an efficient algorithm. As a further consequence, each step of the level-set evolution may be interpreted as a filtering operation with a B-spline kernel. Such filtering induces an intrinsic smoothing in the algorithm, which can be controlled explicitly via the degree and the scale of the chosen B-spline kernel. We illustrate the behavior of this approach on simulated as well as experimental images from various fields.


Assuntos
Algoritmos , Processamento de Imagem Assistida por Computador/métodos , Modelos Estatísticos , Processamento de Sinais Assistido por Computador , Simulação por Computador , Fluorescência , Tomografia Computadorizada por Raios X
8.
Artigo em Inglês | MEDLINE | ID: mdl-31251183

RESUMO

High frame rate imaging is particularly important in echocardiography for better assessment of the cardiac function. Several studies showed that diverging wave imaging (DWI) and multiline transmission (MLT) are promising methods for achieving a high temporal resolution. The aim of this study was to compare MLT and compounded motion compensation (MoCo) DWI for the same transmitted power, same frame rates [image quality and speckle tracking echocardiography (STE) assessment], and same packet size [tissue Doppler imaging (TDI) assessment]. Our results on static images showed that MLT outperforms DW in terms of resolution (by 30% on average). However, in terms of contrast, MLT outperforms DW only for the depth of 11 cm (by 40% on average), the result being reversed at a depth of 4 cm (by 27% on average). In vitro results on a spinning phantom at nine different velocities showed that similar STE axial errors (up to 2.3% difference in median errors and up to 2.1% difference in the interquartile ranges) are obtained with both ultrafast methods. On the other hand, the median lateral STE estimates were up to 13% more accurate with DW than with MLT. On the contrary, the accuracy of TDI was only up to ~3% better with MLT, but the achievable DW Doppler frame rate was up to 20 times higher. However, our overall results showed that the choice of one method relative to the other is therefore dependent on the application. More precisely, in terms of image quality, DW is more suitable for imaging structures at low depths, while MLT can provide an improved image quality at the focal point that can be placed at higher depths. In terms of motion estimation, DW is more suitable for color Doppler-related applications, while MLT could be used to estimate velocities along selected lines of the image.


Assuntos
Ecocardiografia Doppler/métodos , Processamento de Imagem Assistida por Computador/métodos , Animais , Coração/diagnóstico por imagem , Coração/fisiologia , Imagens de Fantasmas , Suínos
9.
IEEE Trans Image Process ; 16(7): 1873-87, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17605385

RESUMO

The partial differential equation driving level-set evolution in segmentation is usually solved using finite differences schemes. In this paper, we propose an alternative scheme based on radial basis functions (RBFs) collocation. This approach provides a continuous representation of both the implicit function and its zero level set. We show that compactly supported RBFs (CSRBFs) are particularly well suited to collocation in the framework of segmentation. In addition, CSRBFs allow us to reduce the computation cost using a kd-tree-based strategy for neighborhood representation. Moreover, we show that the usual reinitialization step of the level set may be avoided by simply constraining the l1-norm of the CSRBF parameters. As a consequence, the final solution is topologically more flexible, and may develop new contours (i.e., new zero-level components), which are difficult to obtain using reinitialization. The behavior of this approach is evaluated from numerical simulations and from medical data of various kinds, such as 3-D CT bone images and echocardiographic ultrasound images.


Assuntos
Algoritmos , Inteligência Artificial , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Reconhecimento Automatizado de Padrão/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Artigo em Inglês | MEDLINE | ID: mdl-18019258

RESUMO

We have shown previously that the statistics of the radio-frequency (RF) signals may be faithfully modeled through the so-called K(RF) distribution, in situations ranging from fully to partially-developed speckle. We demonstrate in this paper that the generalized Gaussian provides a reliable and computationally convenient approximation of the K(RF). The performance of the parameters estimators for the two distributions is evaluated and compared in terms of their bias and variance through numerical simulations. This framework is applied to the modeling of echocardiographic data. The ability of the generalized Gaussian to model RF signals from cardiac tissues (myocardium) and blood regions is demonstrated on data acquired in vivo.


Assuntos
Algoritmos , Ecocardiografia/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Simulação por Computador , Humanos , Modelos Cardiovasculares , Modelos Estatísticos , Distribuição Normal , Ondas de Rádio , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Artigo em Inglês | MEDLINE | ID: mdl-28792894

RESUMO

Single plane wave (PW) imaging produces ultrasound images of poor quality at high frame rates (ultrafast). High-quality PW imaging usually relies on the coherent compounding of several successive steered emissions (typically more than ten), which in turn results in a decreased frame rate. We propose a new strategy to reduce the number of emitted PWs by learning a compounding operation from data, i.e., by training a convolutional neural network to reconstruct high-quality images using a small number of transmissions. We present experimental evidence that this approach is promising, as we were able to produce high-quality images from only three PWs, competing in terms of contrast ratio and lateral resolution with the standard compounding of 31 PWs ( 10× speedup factor).

12.
Comput Med Imaging Graph ; 62: 26-33, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28784271

RESUMO

In this manuscript a novel method is presented for left ventricle (LV) tracking in three-dimensional ultrasound data using a hybrid approach combining segmentation and tracking-based clues. This is accomplished by coupling an affine motion model to an existing LV segmentation framework and introducing an energy term that penalizes the deviation to the affine motion estimated using a global Lucas-Kanade algorithm. The hybrid nature of the proposed solution can be seen as using the estimated affine motion to enhance the temporal coherence of the segmented surfaces, by enforcing the tracking of consistent patterns, while the underlying segmentation algorithm allows to locally refine the estimated global motion. The proposed method was tested on a dataset composed of 24 4D ultrasound sequences from both healthy volunteers and diseased patients. The proposed hybrid tracking platform offers a competitive solution for fast assessment of relevant LV volumetric indices, by combining the robustness of affine motion tracking with the low computational burden of the underlying segmentation algorithm.


Assuntos
Sistemas Computacionais , Ecocardiografia Tridimensional , Ventrículos do Coração , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Humanos
13.
Med Image Anal ; 10(2): 162-77, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16165394

RESUMO

We describe a level set formulation using both shape and motion prior, for both segmentation and region tracking in high frame rate echocardiographic image sequences. The proposed approach uses the following steps: registration of the prior shape, level set segmentation constrained through the registered shape and region tracking. Registration of the prior shape is expressed as a rigid or an affine transform problem, where the transform minimizing a global region-based criterion is sought. This criterion is based on image statistics and on the available estimated axial motion data. The segmentation step is then formulated through front propagation, constrained with the registered shape prior. The same region-based criterion is used both for the registration and the segmentation step. Region tracking is based on the motion field estimated from the interframe level set evolution. The proposed approach is applied to high frame rate echocardiographic sequences acquired in vivo. In this particular application, the prior shape is provided by a medical expert and the rigid transform is used for registration. It is shown that this approach provides consistent results in terms of segmentation and stability through the cardiac cycle. In particular, a comparison indicates that the results provided by our approach are very close to the results obtained with manual tracking performed by an expert cardiologist on a Doppler Tissue Imaging (DTI) study. These preliminary results show the ability of the method to perform region tracking and its potential for dynamic parametric imaging of the heart.


Assuntos
Algoritmos , Inteligência Artificial , Ecocardiografia/métodos , Interpretação de Imagem Assistida por Computador/métodos , Armazenamento e Recuperação da Informação/métodos , Reconhecimento Automatizado de Padrão/métodos , Técnica de Subtração , Humanos , Movimento (Física) , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
Artigo em Inglês | MEDLINE | ID: mdl-16964920

RESUMO

We study in this paper the statistics of the radio frequency (RF) signal in the case of partially developed speckle. Using the K distribution framework, we give the probability density function of the associated distribution, the corresponding moments, and estimators for the parameters of the distribution. The consistency of the proposed estimators is evaluated in terms of their bias and variance through numerical simulations. The ability of the proposed distribution to model RF echographic signals from cardiac tissues is evaluated from data acquired in vivo.


Assuntos
Algoritmos , Ecocardiografia/métodos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Modelos Cardiovasculares , Simulação por Computador , Interpretação Estatística de Dados , Humanos , Modelos Estatísticos , Ondas de Rádio , Distribuições Estatísticas
15.
IEEE Trans Med Imaging ; 35(4): 978-87, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26625410

RESUMO

In this paper we propose a framework for using duplex Doppler ultrasound systems. These type of systems need to interleave the acquisition and display of a B-mode image and of the pulsed Doppler spectrogram. In a recent study (Richy , 2013), we have shown that compressed sensing-based reconstruction of Doppler signal allowed reducing the number of Doppler emissions and yielded better results than traditional interpolation and at least equivalent or even better depending on the configuration than the study estimating the signal from sparse data sets given in Jensen, 2006. We propose here to improve over this study by using a novel framework for randomly interleaving Doppler and US emissions. The proposed method reconstructs the Doppler signal segment by segment using a block sparse Bayesian learning (BSBL) algorithm based CS reconstruction. The interest of using such framework in the context of duplex Doppler is linked to the unique ability of BSBL to exploit block-correlated signals and to recover non-sparse signals. The performance of the technique is evaluated from simulated data as well as experimental in vivo data and compared to the recent results in Richy , 2013.


Assuntos
Processamento de Sinais Assistido por Computador , Ultrassonografia Doppler/métodos , Algoritmos , Teorema de Bayes , Artéria Femoral/diagnóstico por imagem , Humanos , Aprendizado de Máquina , Modelos Cardiovasculares
16.
Artigo em Inglês | MEDLINE | ID: mdl-26685231

RESUMO

Segmentation of the left atrium (LA) of the heart allows quantification of LA volume dynamics which can give insight into cardiac function. However, very little attention has been given to LA segmentation from three-dimensional (3-D) ultrasound (US), most efforts being focused on the segmentation of the left ventricle (LV). The B-spline explicit active surfaces (BEAS) framework has been shown to be a very robust and efficient methodology to perform LV segmentation. In this study, we propose an extension of the BEAS framework, introducing B-splines with uncoupled scaling. This formulation improves the shape support for less regular and more variable structures, by giving independent control over smoothness and number of control points. Semiautomatic segmentation of the LA endocardium using this framework was tested in a setup requiring little user input, on 20 volumetric sequences of echocardiographic data from healthy subjects. The segmentation results were evaluated against manual reference delineations of the LA. Relevant LA morphological and functional parameters were derived from the segmented surfaces, in order to assess the performance of the proposed method on its clinical usage. The results showed that the modified BEAS framework is capable of accurate semiautomatic LA segmentation in 3-D transthoracic US, providing reliable quantification of the LA morphology and function.


Assuntos
Algoritmos , Ecocardiografia Tridimensional/métodos , Átrios do Coração/diagnóstico por imagem , Humanos , Modelos Teóricos
17.
Artigo em Inglês | MEDLINE | ID: mdl-27913327

RESUMO

Ultrafast imaging based on plane-wave (PW) insonification is an active area of research due to its capability of reaching high frame rates. Among PW imaging methods, Fourier-based approaches have demonstrated to be competitive compared with traditional delay and sum methods. Motivated by the success of compressed sensing techniques in other Fourier imaging modalities, like magnetic resonance imaging, we propose a new sparse regularization framework to reconstruct highquality ultrasound (US) images. The framework takes advantage of both the ability to formulate the imaging inverse problem in the Fourier domain and the sparsity of US images in a sparsifying domain. We show, by means of simulations, in vitro and in vivo data, that the proposed framework significantly reduces image artifacts, i.e., measurement noise and sidelobes, compared with classical methods, leading to an increase of the image quality.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Ultrassonografia/métodos , Análise de Fourier , Modelos Teóricos , Imagens de Fantasmas
18.
Artigo em Inglês | MEDLINE | ID: mdl-27740480

RESUMO

Ultrafast ultrasound imaging has become an intensive area of research thanks to its capability in reaching high frame rates. In this paper, we propose a scheme that allows the extension of the current Fourier-based techniques derived for planar acquisition to the reconstruction of sectorial scan with wide angle using diverging waves. The flexibility of the proposed formulation was assessed through two different Fourier-based techniques. The performance of the derived approaches was evaluated in terms of resolution and contrast from both simulations and in vitro experiments. The comparisons of the current state-of-the-art method with the conventional delay-and-sum technique illustrated the potential of the derived methods for producing competitive results with lower computational complexity.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Processamento de Sinais Assistido por Computador , Ultrassonografia/métodos , Algoritmos , Análise de Fourier , Humanos , Movimento (Física) , Imagens de Fantasmas
19.
IEEE Trans Med Imaging ; 34(12): 2467-77, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26057610

RESUMO

In this paper we present a compressed sensing (CS) method adapted to 3D ultrasound imaging (US). In contrast to previous work, we propose a new approach based on the use of learned overcomplete dictionaries that allow for much sparser representations of the signals since they are optimized for a particular class of images such as US images. In this study, the dictionary was learned using the K-SVD algorithm and CS reconstruction was performed on the non-log envelope data by removing 20% to 80% of the original data. Using numerically simulated images, we evaluate the influence of the training parameters and of the sampling strategy. The latter is done by comparing the two most common sampling patterns, i.e., point-wise and line-wise random patterns. The results show in particular that line-wise sampling yields an accuracy comparable to the conventional point-wise sampling. This indicates that CS acquisition of 3D data is feasible in a relatively simple setting, and thus offers the perspective of increasing the frame rate by skipping the acquisition of RF lines. Next, we evaluated this approach on US volumes of several ex vivo and in vivo organs. We first show that the learned dictionary approach yields better performances than conventional fixed transforms such as Fourier or discrete cosine. Finally, we investigate the generality of the learned dictionary approach and show that it is possible to build a general dictionary allowing to reliably reconstruct different volumes of different ex vivo or in vivo organs.


Assuntos
Algoritmos , Imageamento Tridimensional/métodos , Aprendizado de Máquina , Ultrassonografia/métodos , Animais , Encéfalo , Simulação por Computador , Bases de Dados Factuais , Ecocardiografia , Humanos , Rim/diagnóstico por imagem , Ovinos , Suínos
20.
Med Image Anal ; 7(3): 353-67, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12946474

RESUMO

In echocardiography, the radio-frequency (RF) image is a rich source of information about the investigated tissues. Nevertheless, very few works are dedicated to boundary detection based on the RF image, as opposed to envelope image. In this paper, we investigate the feasibility and limitations of boundary detection in echocardiographic images based on the RF signal. We introduce two types of RF-derived parameters: spectral autoregressive parameters and velocity-based parameters, and we propose a discontinuity adaptive framework to perform the detection task. In classical echographic cardiac acquisitions, we show that it is possible to use the spectral contents for boundary detection, and that improvement can be expected with respect to traditional methods. Using the system approach, we study on simulations how the spectral contents can be used for boundary detection. We subsequently perform boundary detection in high frame rate simulated and in vivo cardiac sequences using the variance of velocity, obtaining very promising results. Our work opens the perspective of a RF-based framework for ultrasound cardiac image segmentation and tracking.


Assuntos
Algoritmos , Ecocardiografia/métodos , Coração/fisiologia , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Movimento/fisiologia , Reconhecimento Automatizado de Padrão , Ondas de Rádio , Estudos de Viabilidade , Ventrículos do Coração/diagnóstico por imagem , Humanos , Função Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA