Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Plant Cell Environ ; 40(4): 585-598, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27272019

RESUMO

Cryptogein is a 10 kDa protein secreted by the oomycete Phytophthora cryptogea that activates defence mechanisms in tobacco plants. Among early signalling events triggered by this microbial-associated molecular pattern is a transient apoplastic oxidative burst which is dependent on the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity of the RESPIRATORY BURST OXIDASE HOMOLOG isoform D (RBOHD). Using radioactive [33 P]-orthophosphate labelling of tobacco Bright Yellow-2 suspension cells, we here provide in vivo evidence for a rapid accumulation of phosphatidic acid (PA) in response to cryptogein because of the coordinated onset of phosphoinositide-dependent phospholipase C and diacylglycerol kinase (DGK) activities. Both enzyme specific inhibitors and silencing of the phylogenetic cluster III of the tobacco DGK family were found to reduce PA production upon elicitation and to strongly decrease the RBOHD-mediated oxidative burst. Therefore, it appears that PA originating from DGK controls NADPH-oxidase activity. Amongst cluster III DGKs, the expression of DGK5-like was up-regulated in response to cryptogein. Besides DGK5-like is likely to be the main cluster III DGK isoform silenced in one of our mutant lines, making it a strong candidate for the observed response to cryptogein. The relevance of these results is discussed with regard to early signalling lipid-mediated events in plant immunity.


Assuntos
Diacilglicerol Quinase/metabolismo , Proteínas Fúngicas/farmacologia , NADPH Oxidases/metabolismo , Nicotiana/enzimologia , Explosão Respiratória , Linhagem Celular , Análise por Conglomerados , Ativação Enzimática/efeitos dos fármacos , Mutação com Ganho de Função/genética , Inativação Gênica , MicroRNAs/metabolismo , Moléculas com Motivos Associados a Patógenos/metabolismo , Ácidos Fosfatídicos/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Inibidores de Proteínas Quinases/farmacologia , Explosão Respiratória/efeitos dos fármacos , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo
2.
New Phytol ; 205(3): 1239-1249, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25303640

RESUMO

The proteinaceous elicitor cryptogein triggers defence reactions in Nicotiana tabacum (tobacco) through a signalling cascade, including the early production of reactive oxygen species (ROS) by the plasma membrane (PM)-located tobacco respiratory burst oxidase homologue D (NtRbohD). Sphingolipid long-chain bases (LCBs) are emerging as potent positive regulators of plant defence-related mechanisms. This led us to question whether both LCBs and their phosphorylated derivatives (LCB-Ps) are involved in the early signalling process triggered by cryptogein in tobacco BY-2 cells. Here, we showed that cryptogein-induced ROS production was inhibited by LCB kinase (LCBK) inhibitors. Additionally, Arabidopsis thaliana sphingosine kinase 1 and exogenously supplied LCB-Ps increased cryptogein-induced ROS production, whereas exogenously supplied LCBs had a strong opposite effect, which was not driven by a reduction in cellular viability. Immunogold-electron microscopy assay also revealed that LCB-Ps are present in the PM, which fits well with the presence of a high LCBK activity associated with this fraction. Our data demonstrate that LCBs and LCB-Ps differentially regulate cryptogein-induced ROS production in tobacco BY-2 cells, and support a model in which a cooperative synergism between LCBK/LCB-Ps and NtRbohD/ROS in the cryptogein signalling pathway is likely at the PM in tobacco BY-2 cells.


Assuntos
Proteínas Fúngicas/farmacologia , Nicotiana/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Esfingolipídeos/metabolismo , Morte Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Fosforilação/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Células Vegetais/efeitos dos fármacos , Células Vegetais/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Nicotiana/citologia , Nicotiana/efeitos dos fármacos
3.
Plant Cell Environ ; 38(2): 331-48, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24506708

RESUMO

Nitric oxide (NO) has many functions in plants. Here, we investigated its interplays with reactive oxygen species (ROS) in the defence responses triggered by the elicitin cryptogein. The production of NO induced by cryptogein in tobacco cells was partly regulated through a ROS-dependent pathway involving the NADPH oxidase NtRBOHD. In turn, NO down-regulated the level of H2O2. Both NO and ROS synthesis appeared to be under the control of type-2 histone deacetylases acting as negative regulators of cell death. Occurrence of an interplay between NO and ROS was further supported by the finding that cryptogein triggered a production of peroxynitrite (ONOO(-)). Next, we showed that ROS, but not NO, negatively regulate the intensity of activity of the cryptogein-induced protein kinase NtOSAK. Furthermore, using a DNA microarray approach, we identified 15 genes early induced by cryptogein via NO. A part of these genes was also modulated by ROS and encoded proteins showing sequence identity to ubiquitin ligases. Their expression appeared to be negatively regulated by ONOO(-), suggesting that ONOO(-) mitigates the effects of NO and ROS. Finally, we provided evidence that NO required NtRBOHD activity for inducing cell death, thus confirming previous assumption that ROS channel NO through cell death pathways.


Assuntos
Proteínas Fúngicas/metabolismo , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Proteínas Fúngicas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Peróxido de Hidrogênio/metabolismo , Modelos Biológicos , Ácido Peroxinitroso/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Suspensões , Nicotiana/citologia , Nicotiana/efeitos dos fármacos
4.
Plants (Basel) ; 12(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36616139

RESUMO

In temperate forests, the roots of various tree species are colonized by ectomycorrhizal fungi, which have a key role in the nitrogen nutrition of their hosts. However, not much is known about the molecular mechanisms related to nitrogen metabolism in ectomycorrhizal plants. This study aimed to evaluate the nitrogen metabolic response of oak plants when inoculated with the ectomycorrhizal fungus Pisolithus tinctorius. The expression of candidate genes encoding proteins involved in nitrogen uptake and assimilation was investigated in ectomycorrhizal roots. We found that three oak ammonium transporters were over-expressed in root tissues after inoculation, while the expression of amino acid transporters was not modified, suggesting that inorganic nitrogen is the main form of nitrogen transferred by the symbiotic fungus into the roots of the host plant. Analysis by heterologous complementation of a yeast mutant defective in ammonium uptake and GFP subcellular protein localization clearly confirmed that two of these genes encode functional ammonium transporters. Structural similarities between the proteins encoded by these ectomycorrhizal upregulated ammonium transporters, and a well-characterized ammonium transporter from E. coli, suggest a similar transport mechanism, involving deprotonation of NH4+, followed by diffusion of uncharged NH3 into the cytosol. This view is supported by the lack of induction of NH4+ detoxifying mechanisms, such as the GS/GOGAT pathway, in the oak mycorrhizal roots.

5.
Mol Cell Proteomics ; 8(9): 2186-98, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19525550

RESUMO

A large body of evidence from the past decade supports the existence, in membrane from animal and yeast cells, of functional microdomains playing important roles in protein sorting, signal transduction, or infection by pathogens. In plants, as previously observed for animal microdomains, detergent-resistant fractions, enriched in sphingolipids and sterols, were isolated from plasma membrane. A characterization of their proteic content revealed their enrichment in proteins involved in signaling and response to biotic and abiotic stress and cell trafficking suggesting that these domains were likely to be involved in such physiological processes. In the present study, we used (14)N/(15)N metabolic labeling to compare, using a global quantitative proteomics approach, the content of tobacco detergent-resistant membranes extracted from cells treated or not with cryptogein, an elicitor of defense reaction. To analyze the data, we developed a software allowing an automatic quantification of the proteins identified. The results obtained indicate that, although the association to detergent-resistant membranes of most proteins remained unchanged upon cryptogein treatment, five proteins had their relative abundance modified. Four proteins related to cell trafficking (four dynamins) were less abundant in the detergent-resistant membrane fraction after cryptogein treatment, whereas one signaling protein (a 14-3-3 protein) was enriched. This analysis indicates that plant microdomains could, like their animal counterpart, play a role in the early signaling process underlying the setup of defense reaction. Furthermore proteins identified as differentially associated to tobacco detergent-resistant membranes after cryptogein challenge are involved in signaling and vesicular trafficking as already observed in similar studies performed in animal cells upon biological stimuli. This suggests that the ways by which the dynamic association of proteins to microdomains could participate in the regulation of the signaling process may be conserved between plant and animals.


Assuntos
Proteínas de Algas/farmacologia , Membrana Celular/metabolismo , Detergentes/farmacologia , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Proteômica/métodos , Transdução de Sinais/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Proteínas Fúngicas , Medições Luminescentes , Espectrometria de Massas , Peptídeos/análise , Peptídeos/química , Proteínas de Plantas/química , Ligação Proteica/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Coloração e Rotulagem , Nicotiana/citologia , Nicotiana/efeitos dos fármacos , Nicotiana/microbiologia
6.
Mol Plant Microbe Interact ; 22(7): 868-81, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19522569

RESUMO

Chemiluminescence detection of reactive oxygen species (ROS) triggered in tobacco BY-2 cells by the fungal elicitor cryptogein was previously demonstrated to be abolished in cells transformed with an antisense construct of the plasma membrane NADPH oxidase, NtrbohD. Here, using electron microscopy, it has been confirmed that the first hydrogen peroxide production occurring a few minutes after challenge of tobacco cells with cryptogein is plasma membrane located and NtrbohD mediated. Furthermore, the presence of NtrbohD in detergent-resistant membrane fractions could be associated with the presence of NtrbohD-mediated hydrogen peroxide patches along the plasma membrane. Comparison of the subcellular localization of ROS in wild-type tobacco and in plants transformed with antisense constructs of NtrbohD revealed that this enzyme is also responsible for the hydrogen peroxide production occurring at the plasma membrane after infiltration of tobacco leaves with cryptogein. Finally, the reactivity of wild-type and transformed plants to the elicitor and their resistance against the pathogenic oomycete Phytophthora parasitica were examined. NtrbohD-mediated hydrogen peroxide production does not seem determinant for either hypersensitive response development or the establishment of acquired resistance but it is most likely involved in the signaling pathways associated with the protection of the plant cell.


Assuntos
Nicotiana/metabolismo , Oxirredutases/fisiologia , Proteínas de Plantas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Células Cultivadas , DNA Antissenso , Proteínas Fúngicas/farmacologia , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/metabolismo , Microscopia Eletrônica de Transmissão , Oxirredutases/análise , Oxirredutases/genética , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Proteínas de Plantas/análise , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/metabolismo , Espécies Reativas de Oxigênio/análise , Nicotiana/efeitos dos fármacos , Nicotiana/genética , Nicotiana/ultraestrutura
7.
Front Microbiol ; 8: 2228, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209286

RESUMO

Plants interact with microbes whose ultimate aim is to exploit plant carbohydrates for their reproduction. Plant-microbe interactions (PMIs) are classified according to the nature of their trophic exchanges: while mutualistic microbes trade nutrients with plants, pathogens unilaterally divert carbohydrates. The early responses following microbe recognition and the subsequent control of plant sugar distribution are still poorly understood. To further decipher PMI functionality, we used tobacco cells treated with microbial molecules mimicking pathogenic or mutualistic PMIs, namely cryptogein, a defense elicitor, and chitotetrasaccharide (CO4), which is secreted by mycorrhizal fungi. CO4 was perceived by tobacco cells and triggered widespread transient signaling components such as a sharp cytosolic Ca2+ elevation, NtrbohD-dependent H2O2 production, and MAP kinase activation. These CO4-induced events differed from those induced by cryptogein, i.e., sustained events leading to cell death. Furthermore, cryptogein treatment inhibited glucose and sucrose uptake but not fructose uptake, and promoted the expression of NtSUT and NtSWEET sugar transporters, whereas CO4 had no effect on sugar uptake and only a slight effect on NtSWEET2B expression. Our results suggest that microbial molecules induce different signaling responses that reflect microbial lifestyle and the subsequent outcome of the interaction.

8.
FEBS Lett ; 579(21): 4879-86, 2005 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-16111682

RESUMO

Elicitation of defense reactions in tobacco by cryptogein, triggered a production of active oxygen species (AOS) via the NADPH oxidase, NtrbohD, and an accumulation of beta1din, a defense induced beta-type subunit of 20S proteasome. The proteasome inhibitor, MG132, stimulated this AOS production. Tobacco cells transformed with sense constructs of beta1din showed an inhibition of the AOS production following elicitin treatment, whereas the antisense transformed cells showed a strongly enhanced AOS production. In cells transformed with sense construct of beta1din, the NtrbohD transcripts failed to be induced by cryptogein as observed in control and antisense transformed cells. Conversely, in tobacco cells transformed with antisense constructs for NtrbohD, beta1din transcripts remained at a low level after elicitation. These results constitute the first demonstration of proteasome comprising beta1din acting as a negative regulator of NtrbohD and contributes to the regulation of AOS generation during plant defense reactions.


Assuntos
NADPH Oxidases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Subunidades Proteicas/metabolismo , Inibidores de Cisteína Proteinase/metabolismo , Leupeptinas/metabolismo , Oligonucleotídeos Antissenso , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Inibidores de Proteassoma , Espécies Reativas de Oxigênio/metabolismo , Nicotiana/citologia , Nicotiana/genética , Nicotiana/metabolismo
9.
J Plant Physiol ; 171(16): 1533-40, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25128785

RESUMO

Interactions of plant retrotransposons with different steps of biotic and abiotic stress-associated signaling cascades are still poorly understood. We perform here a finely tuned comparison of four tobacco retrotransposons (Tnt1, Tnt2, Queenti, and Tto1) responses to the plant elicitor cryptogein. We demonstrate that basal transcript levels in cell suspensions and plant leaves as well as the activation during the steps of defense signaling events are specific to each retrotransposon. Using antisense NtrbohD lines, we show that NtrbohD-dependent reactive oxygen species (ROS) production might act as negative regulator of retrotransposon activation.


Assuntos
Proteínas Fúngicas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Nicotiana/genética , Retroelementos , DNA Antissenso/genética , DNA Antissenso/metabolismo , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Retroelementos/genética , Transdução de Sinais , Nicotiana/metabolismo
10.
Plant Physiol ; 146(3): 1255-66, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18184734

RESUMO

The plant defense elicitor cryptogein triggers well-known biochemical events of early signal transduction at the plasma membrane of tobacco (Nicotiana tabacum) cells, but microscopic observations of cell responses related to these early events were lacking. We determined that internalization of the lipophilic dye FM4-64, which is a marker of endocytosis, is stimulated a few minutes after addition of cryptogein to tobacco Bright Yellow-2 (BY-2) cells. This stimulation is specific to the signal transduction pathway elicited by cryptogein because a lipid transfer protein, which binds to the same receptor as cryptogein but without triggering signaling, does not increase endocytosis. To define the nature of the stimulated endocytosis, we quantified clathrin-coated pits (CCPs) forming on the plasma membrane of BY-2 cells. A transitory stimulation of this morphological event by cryptogein occurs within the first 15 min. In the presence of cryptogein, increases in both FM4-64 internalization and clathrin-mediated endocytosis are specifically blocked upon treatment with 5 microm tyrphostin A23, a receptor-mediated endocytosis inhibitor. The kinetics of the transient increase in CCPs at the plasma membrane coincides with that of transitory reactive oxygen species (ROS) production occurring within the first 15 min after elicitation. Moreover, in BY-2 cells expressing NtrbohD antisense cDNA, which are unable to produce ROS when treated with cryptogein, the CCP stimulation is inhibited. These results indicate that the very early endocytic process induced by cryptogein in tobacco is due, at least partly, to clathrin-mediated endocytosis and is dependent on ROS production by the NADPH oxidase NtrbohD.


Assuntos
Proteínas de Algas/fisiologia , Vesículas Revestidas por Clatrina/metabolismo , Endocitose/fisiologia , Nicotiana/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Corantes Fluorescentes/metabolismo , Proteínas Fúngicas , Interações Hospedeiro-Patógeno/fisiologia , Ligantes , Microscopia Eletrônica de Transmissão , Compostos de Piridínio/metabolismo , Compostos de Amônio Quaternário/metabolismo , Transdução de Sinais/fisiologia , Espectrometria de Fluorescência , Nicotiana/microbiologia , Nicotiana/ultraestrutura , Tirfostinas
11.
Plant Cell Environ ; 30(6): 722-32, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17470148

RESUMO

The regulation of the system responsible for the production of reactive oxygen species (ROS) during plant-micro-organism interaction is still largely unknown. The protein NtrbohD has been recently demonstrated as the plasma membrane oxidase responsible for ROS production in elicited tobacco cells. Here, its C-terminus part was used as a bait in a two-hybrid screen in order to identify putative regulators of this system. This led to the isolation of a cDNA coding for a member of the 14-3-3 protein family. The corresponding transcript was induced after infiltration of tobacco leaves with the fungal elicitor cryptogein. Tobacco cells transformed with an antisense construct of this 14-3-3 no longer accumulated ROS, which constitutes a functional validation of the two-hybrid screen. This work provides new insights to the understanding of the regulation of ROS production in a signalling context and gives a new light to the possible role of 14-3-3 proteins in plant-micro-organisms interactions.


Assuntos
Proteínas 14-3-3/metabolismo , Nicotiana/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Sequência de Aminoácidos , DNA Complementar , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Nicotiana/citologia , Técnicas do Sistema de Duplo-Híbrido
12.
Mol Cell Proteomics ; 5(8): 1396-411, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16648627

RESUMO

A large body of evidence from the past decade supports the existence, in membrane from animal and yeast cells, of functional microdomains that play important roles in protein sorting, signal transduction, or infection by pathogens. Recent reports demonstrated the presence, in plants, of detergent-resistant fractions isolated from plasma membrane. Analysis of the lipidic composition of this fraction revealed its enrichment in sphingolipids and sterols and depletion in phospho- and glycerolipids as previously observed for animal microdomains. One-dimensional gel electrophoresis experiments indicated that these detergent-resistant fractions are able to recruit a specific set of plasma membrane proteins and exclude others. In the present study, we used mass spectrometry to give an extensive description of a tobacco plasma membrane fraction resistant to solubilization with Triton X-100. This led to the identification of 145 proteins whose functional and physicochemical characteristics were analyzed in silico. Parameters such as isoelectric point, molecular weight, number and length of transmembrane segments, or global hydrophobicity were analyzed and compared with the data available concerning plant plasma membrane proteins. Post-translational modifications, such as myristoylation, palmitoylation, or presence of a glycosylphosphatidylinositol anchor, were examined in relation to the presence of the corresponding proteins in these microdomains. From a functional point of view, this analysis indicated that if a primary function of the plasma membrane, such as transport, seems under-represented in the detergent-resistant fraction, others undergo a significant increase of their relative importance. Among these are signaling and response to biotic and abiotic stress, cellular trafficking, and cell wall metabolism. This suggests that these domains are likely to constitute, as in animal cells, signaling platforms involved in these physiological functions.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/análise , Nicotiana/metabolismo , Proteínas de Plantas/análise , Proteoma/análise , Transporte Biológico , Parede Celular/metabolismo , Células Cultivadas , Espectrometria de Massas , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Octoxinol/química , Proteínas de Plantas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteoma/metabolismo , Transdução de Sinais/fisiologia
13.
Plant J ; 37(2): 282-93, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14690511

RESUMO

Five cDNAs encoding Rac protein homologues to the Rho-related proteins from plants (Rop) were isolated in tobacco, and the function of one of them, Ntrac5, was studied. The Ntrac5 mRNA is repressed when tobacco leaves and cells are treated with the fungal elicitor cryptogein. Tobacco cells were transformed with sense constructs of Ntrac5 or Ntrac5V15, encoding the native GTP/GDP-bound form of this Rac protein homologue or the constitutively active mutant in its GTP-bound form, respectively. Immunological studies indicate that the corresponding protein is continuously located on the plasma membrane (PM). Both types of transformed cells show the same extra-cellular alkalinization as the control, but a high decrease in the active oxygen species (AOS) production after elicitation with cryptogein. Moreover, the regulation of NtrbohD, the oxidase involved in AOS production upon elicitation, is affected at both transcriptional and translational levels in cells overexpressing Ntrac5. Thus, Ntrac5 could be considered as a negative regulator of NtrbohD.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Nicotiana/fisiologia , Oxirredutases/genética , Proteínas de Plantas/genética , Explosão Respiratória/genética , Proteínas rac de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Sequência Conservada , DNA Complementar/química , DNA Complementar/genética , Humanos , Dados de Sequência Molecular , Oxirredutases/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Nicotiana/enzimologia , Nicotiana/genética , Transformação Genética , Proteínas rac de Ligação ao GTP/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA