Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Environ Microbiol ; 24(9): 3985-4000, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35238127

RESUMO

The mechanisms underlying microbial community dynamics and co-occurrence patterns along ecological succession are crucial for understanding ecosystem recovery but remain largely unexplored. Here, we investigated community dynamics and taxa co-occurrence patterns in bacterial and fungal communities across a well-established chronosequence of post-mining lands spanning 54 years of recovery. Bacterial community structures became increasingly phylogenetically clustered with soil age at early successional stages and varied less at later successional stages. The dynamics of bacterial community phylogenetic structures were determined by the changes in the soil vegetation cover along succession. The dynamics of fungal community phylogenetic structures did not significantly correlate with soil age, soil properties or vegetation cover, and were mainly attributed to stochastic processes. Along succession, the common decrease in the bacterial co-occurrence complexity and in the average pairwise phylogenetic distances between co-occurring bacteria implied a decrease in potential bacterial cooperation. The increased complexity of fungal co-occurrence along succession was independent of phylogenetic relatedness between co-occurring fungi. This study provides new sights into ecological mechanisms underlying bacterial and fungal community succession.


Assuntos
Ecossistema , Micobioma , Bactérias/genética , Micobioma/genética , Filogenia , Solo/química , Microbiologia do Solo
2.
Glob Chang Biol ; 28(16): 4775-4782, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35543252

RESUMO

Microbial necromass is a central component of soil organic matter (SOM), whose management may be essential in mitigating atmospheric CO2 concentrations and climate change. Current consensus regards the magnitude of microbial necromass production to be heavily dependent on the carbon use efficiency of microorganisms, which is strongly influenced by the quality of the organic matter inputs these organisms feed on. However, recent concepts neglect agents relevant in many soils: earthworms. We argue that the activity of earthworms accelerates the formation of microbial necromass stabilized in aggregates and organo-mineral associations and reduces the relevance of the quality of pre-existing organic matter in this process. Earthworms achieve this through the creation of transient hotspots (casts) characterized by elevated contents of bioavailable substrate and the efficient build-up and quick turnover of microbial biomass, thus converting SOM not mineralized in this process into a state more resistant against external disturbances, such as climate change. Promoting the abundance of earthworms may, therefore, be considered a central component of management strategies that aim to accelerate the formation of stabilized microbial necromass in wide locations of the soil commonly not considered hotspots of microbial SOM formation.


Assuntos
Oligoquetos , Solo , Animais , Biomassa , Carbono/química , Solo/química , Microbiologia do Solo
3.
Conserv Biol ; 36(6): e13959, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35638587

RESUMO

Red wood ants (RWAs) are a group of keystone species widespread in temperate and boreal forests of the Northern Hemisphere. Despite this, there is increasing evidence of local declines and extinctions. We reviewed the current protection status of RWAs throughout Europe and their International Union for the Conservation of Nature (IUCN) threat classification. Only some RWA species have been assessed at a global scale, and not all national red lists of the countries where RWAs are present include these species. Different assessment criteria, inventory approaches, and risk categories are used in different countries, and data deficiency is frequent. Legislative protection is even more complex, with some countries protecting RWAs implicitly together with the wildlife fauna and others explicitly protecting the whole group or particular species. This complexity often occurs within countries, for example, in Italy, where, outside of the Alps, only the introduced species are protected, whereas the native species, which are in decline, are not. Therefore, an international, coordinated framework is needed for the protection of RWAs. This first requires that the conservation target should be defined. Due to the similar morphology, complex taxonomy, and frequent hybridization, protecting the entire RWA group seems a more efficient strategy than protecting single species, although with a distinction between autochthonous and introduced species. Second, an update of the current distribution of RWA species is needed throughout Europe. Third, a protection law cannot be effective without the collaboration of forest managers, whose activity influences RWA habitat. Finally, RWA mounds offer a peculiar microhabitat, hosting a multitude of taxa, some of which are obligate myrmecophilous species on the IUCN Red List. Therefore, RWAs' role as umbrella species could facilitate their protection if they are considered not only as target species but also as providers of species-rich microhabitats.


Las hormigas rojas de la madera (HRM) conforman un grupo de especies clave con amplia distribución en los bosques templados y boreales del Hemisferio Norte. A pesar de lo anterior, cada vez hay más evidencia de su declinación y extinción local. Revisamos el estado actual de protección de las HRM en toda Europa y su clasificación en la Lista Roja de la Unión Internacional para la Conservación de la Naturaleza (UICN). Sólo se han evaluado algunas especies de HRM a escala mundial y no todas las listas rojas nacionales de los países con presencia de HRM incluyen a estas especies. Los diferentes países usan criterios de evaluación, estrategias de inventario y categorías de riesgo distintos, además de que la información deficiente es habitual. La protección legislativa es todavía más compleja pues algunos países protegen implícitamente a las HRM junto con la fauna silvestre y otros protegen explícitamente a todo el grupo o a una especie particular. Esta complejidad ocurre a menudo en los países (por ejemplo: Italia) en donde, fuera de los Alpes, sólo se protege a las especies introducidas, mientras a las especies nativas, que están declinando, no se les protege. Por lo tanto, se requiere un marco de trabajo internacional y coordinado para proteger a las HRM. Esto necesita primero que se defina el objetivo de conservación. Ya que las HRM tienen similitudes morfológicas, una taxonomía compleja e hibridación frecuente, la protección del grupo completo, con la distinción entre las especies autóctonas y las introducidas, parece ser una estrategia más eficiente que la protección de una sola especie. Segundo, se debe actualizar la distribución actual de las HRM en Europa. Tercero, una ley de protección no puede ser efectiva sin la colaboración de los gestores forestales, cuya actividad influye sobre el hábitat de las HRM Finalmente, los montículos de las HRM ofrecen un microhábitat peculiar pues hospedan a una multitud de taxones, algunos de los cuales son especies mirmecófilas obligadas presentes en la Lista Roja de la UICN. Así, el papel de las HRM como especie paraguas podría facilitar su protección si se les considera no sólo como especies diana sino también como proveedoras de microhábitats con riqueza de especies.


Assuntos
Formigas , Animais , Conservação dos Recursos Naturais , Florestas , Ecossistema , Europa (Continente)
4.
Environ Res ; 205: 112476, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863684

RESUMO

Long-term fertilization has shown a high relevance as regards soil organic carbon (SOC) sequestration, but the degree of stability of the sequestered SOC has not been widely studied up to now. Using physical fractionation combined with laboratory incubation and NMR spectroscopy, we evaluated the differences in SOC stability caused by long-term fertilization. Four SOC fractions were isolated and examined for contents and chemical composition and cumulative amount of CO2-C respired from the fractions under six fertilization treatments: control (CK); balanced inorganic fertilization (NPK); NPK combined with pig manure (MNPK); NPK combined 1.5 times of pig manure (1.5MNPK); and NPK combined with high amount of manure (M2NPK). The highest contents of SOC were recorded for the coarse particulate organic carbon (cPOC) fraction, ranging from 17.25 to 30.47 g kg-1 under CK and M2NPK. The highest cumulative amount of CO2-C was released from the cPOC fraction under manure treatments (M2NPK and 1.5NPKM), which was 56 and 43% higher than that from CK, whereas the lowest amount of CO2-C was released from the mineral associated-C (MOC) fraction under the same treatments, being 65 and 49% higher than that released from CK, suggesting low SOC stability in cPOC and high SOC stability in MOC fractions. However, manure treatments (M2NPK and 1.5NPKM) greatly lowered the specific amount of C-mineralized (C-mineralized per unit total SOC) in fractions and whole soil, suggesting the ability of manure to accumulate more SOC by reducing SOC losses. Moreover, carbonyl-C was found to be the form of SOC experiencing major degree of sequestration under current fertilization practices. The SOC stability indices; aromaticity index (AI), hydrophobicity index (HI) and alkyl-C/O-alkyl-C were found to be higher in manure treated plots further suggesting higher stability of SOC under manure addition. Thus, long-term manure combined with mineral fertilizers would enhance SOC stability through minimizing SOC losses and promoting accumulation of stable C forms in a Chinese Mollisol.


Assuntos
Carbono , Solo , Agricultura/métodos , Animais , Carbono/análise , Fertilização , Fertilizantes/análise , Espectroscopia de Ressonância Magnética , Esterco/análise , Solo/química , Suínos
5.
J Environ Manage ; 319: 115668, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35842991

RESUMO

Willow (Salix caprea), birch (Betula pendula) and aspen (Populus tremula) are common pioneer woody species, however little is known about colonization strategies in large-scale disturbances. Here we have compared the strategies of establishment of these pioneer woody species in unreclaimed sites on a large (1957 ha) spoil heap in Czechia. For all species, seedlings numbers peaked in the 17 year old (successional age - time since overburden heaping) plot, suggesting that initial soil development promotes seedling establishment while covering of the surface by litter and organic layers reduces the establishment of pioneer species. The proportion of willow decreased from the edge of the heap and analysis of the age structure suggests that willow establishment was correlated with the presence of older willows in the vicinity of willows of certain ages (13 and 23 years being particularly important). The proportion of birch increased with its distance from the heap edge, and it is correlated with suitable weather conditions in the year of establishment, mainly July rainfall. Aspen proportion does not change significantly with its distance from the heap edge and year of establishment. It correlates with the number of trees in both surrounding and climatic conditions. Detailed analysis of young trees shows that vegetative propagation by root suckers (offspring) is rare in birch. In willow they represent about half of the trees while in aspen all of the young trees were root suckers derived from older aspen trees. This indicates a different colonization strategy of individual species. Birch is capable of long-distance seed transfer, which establishes most of the population, and its establishment is highly influenced by climatic conditions. Willow spreads massively over a short distance, and its establishment is highly influenced by the presence of 21-23 year old willow individuals in the vicinity. Only few scattered trees are able to establish at longer distances, where they can later spread locally by seeds. Aspen spreads over a long distance in low numbers but when some trees are established it spreads massively locally by clones.


Assuntos
Populus , Salix , Adolescente , Adulto , Betula , Humanos , Plântula , Árvores , Madeira , Adulto Jovem
6.
J Environ Manage ; 290: 112567, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33866087

RESUMO

Soils and forest soil in particular represent important pools of carbon (C). The amount of C stored in soil depends on the input of organic matter into the soil, but also on quality of the organic matter, which determines the proportion of organic matter that remains in the soil or that is released from the soil as CO2. Here, we present a quantitative review of common garden experiments in which various tree species were planted alongside each other. The main goals of the study were to determine whether: 1) the amount of sequestered C under broadleaf and coniferous trees could be affected by soil age and previous land use; 2) the C:N ratio of leaf litter is correlated with the amount of sequestered C; 3) the amount of sequestered C under broadleaf and coniferous trees could be affected by pH and clay content. We found that the effects of broadleaf and coniferous trees on soil organic carbon (SOC) sequestration differed with the stage of soil development. We used soils with different previous land uses as a representative of different stages of soil development. Forest soils and agricultural soils represent soils in later stages of soil development and post-mining soils represent soils in early stages of development. In forest soils, more SOC was stored under coniferous trees than under broadleaf trees. In post-mining soils the opposite trend was found, i.e., more SOC was stored under broadleaf than coniferous trees. In afforested agricultural soils, SOC sequestration did not differ between broadleaf and coniferous trees. SOC sequestration under broadleaf trees was highest in soils with high pH. SOC sequestration was negatively correlated with the litter C:N ratio in post-mining soils but not in other more mature soils. Similarly, SOC sequestration was negatively correlated with the litter C:N in alkaline soils and in soils with high clay content. These results suggest that dominant SOC sequestration mechanisms change with stage of soil development such that SOC storage is greater under broadleaf trees in immature soils but is greater under coniferous trees in mature soils.


Assuntos
Traqueófitas , Árvores , Carbono , Sequestro de Carbono , Florestas , Solo
7.
J Environ Manage ; 209: 216-226, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29294447

RESUMO

Reclamation of post-mining sites commonly results in rapid accrual of carbon (C) and nitrogen (N) contents due to increasing plant inputs over time. However, little information is available on the distribution of C and N contents with respect to differently stabilized soil organic matter (SOM) fractions during succession or as a result of different reclamation practice. Hence, it remains widely unknown how stable or labile these newly formed C and N pools are. Gaining a deeper understanding of the state of these pools may provide important implications for reclamation practices with respect to C sequestration. We thus investigated C, N, and plant-derived compounds in bulk soil and SOM fractions during succession in post-mining chronosequences (reclaimed with overburden or salvaged topsoil) located along a northwest to southeast transect across the USA. Our results indicate that current reclamation practices perform well with respect to rapid recovery of soil aggregates and the partitioning of C and N to different SOM fractions, these measures being similar to those of natural climax vegetation sites already 2-5 years after reclamation. A general applicability of our results to other post-mining sites with similar reclamation practices may be inferred from the fact that the observed patterns were consistent along the investigated transect, covering different climates and vegetation across the USA. However, regarding SOM stability, the use of salvaged topsoil may be beneficial as compared to that of overburden material because C and N in the fraction regarded as most stable was by 26 and 35% lower at sites restored with overburden as compared to those restored with salvaged topsoil. Plant-derived compounds appeared to be mainly related to bio-available particulate organic matter and particulate organic matter partly stabilized within aggregates, challenging the long-term persistence of plant input C in post-mining soils.


Assuntos
Carbono/análise , Nitrogênio/análise , Mineração , Material Particulado , Solo/química
8.
J Environ Manage ; 205: 50-58, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28964974

RESUMO

Geodiversity plays an important role in species establishment during spontaneous succession. At post-mining sites in the Czech Republic in 2003, we established plots in which the surface of the heaped overburden was either kept wave-like or leveled. Based on surveys conducted from 2006 to 2015, leveled plots were increasingly dominated by grasses and herbs (and especially by the grass Calamagrostis epigejos) while the wave-like plots were increasingly dominated by the trees Salix caprea and Betula pendula. In 2015, a detailed survey was conducted of the dominant species. Both S. caprea and B. pendula occurred more often in wave-like plots than in leveled plots; this was particularly true for trees taller than 1 m, which were absent in leveled plots. In wave-like plots, leaf and root biomasses of both woody species were higher on the wave slopes than on the wave depressions. Nitrogen content was higher but content stress indicating proline in leaves of S. caprea was lower in wave-like plots than in leveled plots. In wave-like plots, both woody species occurred mainly on wave slopes but C. epigejos occurred mainly in the depressions. We speculate that trees were more abundant in wave-like plots than in leveled plots because the waves trapped tree seeds and snow and because the soil porosity was greater in wave-like than in leveled plots. Grasses may have preferred the leveled plots because soil porosity was lower and clay content was higher in leveled than in wave-like plots.


Assuntos
Meio Ambiente , Poaceae , República Tcheca , Solo , Árvores , Madeira
9.
J Environ Manage ; 220: 1-7, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-29753140

RESUMO

Heterogeneity of environmental conditions is the crucial factor supporting biodiversity in various habitats, including post-mining sites. The effects of micro-topographic heterogeneity on biodiversity and conservation potential of arthropod communities in post-industrial habitats had not been studied before now. At one of the largest European brown coal spoil heaps, we sampled eight groups of terrestrial arthropods with different life strategies (moths, spiders, ground beetles, ants, orthopteroids, centipedes, millipedes, and woodlice), in successionally young plots (5-18 y), with a heterogeneous wavy surface after heaping, and compared the communities with plots flattened by dozing. A combination of the standardized quantitative sampling, using two different methods, and a paired design of the plot selection enabled a robust analysis. Altogether, we recorded 380 species of the focal arthropods, 15 of them nationally threatened. We revealed the importance of the micro-topographic heterogeneity for the formation of the biodiversity of arthropods in their secondary refuges. The communities with higher biodiversity and conservation value were detected in the plots with heterogeneous surfaces; exceptions were ground beetles and millipedes. The surface flattening, often the first step of technical reclamation projects, thus suppress biodiversity of most terrestrial arthropods during the restoration of post-mining sites. Since the communities of both surface types differed, the proportional presence on both surfaces could be more efficient in supporting the local biodiversity. We suggest reducing the surface dozing for the cases with other concerns only, to achieve a proportional representation of both surface types. Such a combination of different restoration approaches would, thus, efficiently support high biodiversity of groups with various needs.


Assuntos
Artrópodes , Biodiversidade , Carvão Mineral , Animais , Besouros , Ecossistema , Recuperação e Remediação Ambiental
10.
Mycorrhiza ; 27(8): 775-789, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28752181

RESUMO

The arbuscular mycorrhizal (AM) grass Calamagrostis epigejos and predominantly ectomycorrhizal (EcM) tree Salix caprea co-occur at post-mining sites spontaneously colonized by vegetation. During succession, AM herbaceous vegetation is replaced by predominantly EcM woody species. To better understand the interaction of AM and EcM plants during vegetation transition, we studied the reciprocal effects of these species' coexistence on their root-associated fungi (RAF). We collected root and soil samples from three different microenvironments: stand of C. epigejos, under S. caprea canopy, and contact zone where roots of the two species interacted. RAF communities and mycorrhizal colonization were determined in sampled roots, and the soil was tested for EcM and AM inoculation potentials. Although the microenvironment significantly affected composition of the RAF communities in both plant species, the effect was greater in the case of C. epigejos RAF communities than in that of S. caprea RAF communities. The presence of S. caprea also significantly decreased AM fungal abundance in soil as well as AM colonization and richness of AM fungi in C. epigejos roots. Changes observed in the abundance and community composition of AM fungi might constitute an important factor in transition from AM-dominated to EcM-dominated vegetation during succession.


Assuntos
Ecossistema , Micorrizas/fisiologia , Poaceae/microbiologia , Salix/microbiologia , Microbiologia do Solo , República Tcheca , Árvores/microbiologia
11.
Proc Natl Acad Sci U S A ; 110(35): 14296-301, 2013 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-23940339

RESUMO

Intensive land use reduces the diversity and abundance of many soil biota, with consequences for the processes that they govern and the ecosystem services that these processes underpin. Relationships between soil biota and ecosystem processes have mostly been found in laboratory experiments and rarely are found in the field. Here, we quantified, across four countries of contrasting climatic and soil conditions in Europe, how differences in soil food web composition resulting from land use systems (intensive wheat rotation, extensive rotation, and permanent grassland) influence the functioning of soils and the ecosystem services that they deliver. Intensive wheat rotation consistently reduced the biomass of all components of the soil food web across all countries. Soil food web properties strongly and consistently predicted processes of C and N cycling across land use systems and geographic locations, and they were a better predictor of these processes than land use. Processes of carbon loss increased with soil food web properties that correlated with soil C content, such as earthworm biomass and fungal/bacterial energy channel ratio, and were greatest in permanent grassland. In contrast, processes of N cycling were explained by soil food web properties independent of land use, such as arbuscular mycorrhizal fungi and bacterial channel biomass. Our quantification of the contribution of soil organisms to processes of C and N cycling across land use systems and geographic locations shows that soil biota need to be included in C and N cycling models and highlights the need to map and conserve soil biodiversity across the world.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Cadeia Alimentar , Solo , Dióxido de Carbono/análise , Metano/análise , Oxigênio/análise
12.
Mycorrhiza ; 26(7): 757-67, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27260187

RESUMO

Little is known about the functioning of arbuscular mycorrhizal (AM) symbiosis over the course of primary succession, where soil, host plants, and AM fungal communities all undergo significant changes. Over the course of succession at the studied post-mining site, plant cover changes from an herbaceous community to the closed canopy of a deciduous forest. Calamagrostis epigejos (Poaceae) is a common denominator at all stages, and it dominates among AM host species. Its growth response to AM fungi was studied at four distinctive stages of natural succession: 12, 20, 30, and 50 years of age, each represented by three spatially separated sites. Soils obtained from all 12 studied sites were γ-sterilized and used in a greenhouse experiment in which C. epigejos plants were (1) inoculated with a respective community of native AM fungi, (2) inoculated with reference AM fungal isolates from laboratory collection, or (3) cultivated without AM fungi. AM fungi strongly boosted plant growth during the first two stages but not during the latter two, where the effect was neutral or even negative. While plant phosphorus (P) uptake was generally increased by AM fungi, no contribution of mycorrhizae to nitrogen (N) uptake was recorded. Based on N:P in plant biomass, we related the turn from a positive to a neutral/negative effect of AM fungi on plant growth, observed along the chronosequence, to a shift in relative P and N availability. No functional differences were found between native and reference inocula, yet root colonization by the native AM fungi decreased relative to the reference inoculum in the later succession stages, thereby indicating shifts in the composition of AM fungal communities reflected in different functional characteristics of their members.


Assuntos
Micorrizas/fisiologia , Poaceae/fisiologia , Desenvolvimento Vegetal , Solo/química , Microbiologia do Solo , Fatores de Tempo
13.
Glob Chang Biol ; 21(2): 973-85, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25242445

RESUMO

Soil biodiversity plays a key role in regulating the processes that underpin the delivery of ecosystem goods and services in terrestrial ecosystems. Agricultural intensification is known to change the diversity of individual groups of soil biota, but less is known about how intensification affects biodiversity of the soil food web as a whole, and whether or not these effects may be generalized across regions. We examined biodiversity in soil food webs from grasslands, extensive, and intensive rotations in four agricultural regions across Europe: in Sweden, the UK, the Czech Republic and Greece. Effects of land-use intensity were quantified based on structure and diversity among functional groups in the soil food web, as well as on community-weighted mean body mass of soil fauna. We also elucidate land-use intensity effects on diversity of taxonomic units within taxonomic groups of soil fauna. We found that between regions soil food web diversity measures were variable, but that increasing land-use intensity caused highly consistent responses. In particular, land-use intensification reduced the complexity in the soil food webs, as well as the community-weighted mean body mass of soil fauna. In all regions across Europe, species richness of earthworms, Collembolans, and oribatid mites was negatively affected by increased land-use intensity. The taxonomic distinctness, which is a measure of taxonomic relatedness of species in a community that is independent of species richness, was also reduced by land-use intensification. We conclude that intensive agriculture reduces soil biodiversity, making soil food webs less diverse and composed of smaller bodied organisms. Land-use intensification results in fewer functional groups of soil biota with fewer and taxonomically more closely related species. We discuss how these changes in soil biodiversity due to land-use intensification may threaten the functioning of soil in agricultural production systems.


Assuntos
Agricultura/métodos , Biodiversidade , Microbiologia do Solo , Europa (Continente)
14.
Nat Commun ; 15(1): 5005, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886372

RESUMO

Fauna is highly abundant and diverse in soils worldwide, but surprisingly little is known about how it affects soil organic matter stabilization. Here, we review how the ecological strategies of a multitude of soil faunal taxa can affect the formation and persistence of labile (particulate organic matter, POM) and stabilized soil organic matter (mineral-associated organic matter, MAOM). We propose three major mechanisms - transformation, translocation, and grazing on microorganisms - by which soil fauna alters factors deemed essential in the formation of POM and MAOM, including the quantity and decomposability of organic matter, soil mineralogy, and the abundance, location, and composition of the microbial community. Determining the relevance of these mechanisms to POM and MAOM formation in cross-disciplinary studies that cover individual taxa and more complex faunal communities, and employ physical fractionation, isotopic, and microbiological approaches is essential to advance concepts, models, and policies focused on soil organic matter and effectively manage soils as carbon sinks, nutrient stores, and providers of food.


Assuntos
Microbiologia do Solo , Solo , Solo/química , Animais , Ecossistema , Compostos Orgânicos , Minerais/química , Carbono/química , Carbono/metabolismo , Microbiota
15.
Microorganisms ; 10(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36296195

RESUMO

Microbial diversity plays an important role in the decomposition of soil organic matter. However, the pattern and drivers of the relationship between microbial diversity and decomposition remain unclear. In this study, we followed the decomposition of organic matter in soils where microbial diversity was experimentally manipulated. To produce a gradient of microbial diversity, we used soil samples at two sites of the same chronosequence after brown coal mining in Sokolov, Czech Republic. Soils were X-ray sterilized and inoculated by two densities of inoculum from both soils and planted with seeds of six local plant species. This created two soils each with four levels of microbial diversity characterized by next-generation sequencing. These eight soils were supplied, or not, by litter of the bushgrass Calamagrostis epigejos, and microbial respiration was measured to assess the rate of decomposition. A strong positive correlation was found between microbial diversity and decomposition of organic matter per gram of carbon in soil, which suggests that microbial diversity supports decomposition if the microbial community is limited by available carbon. In contrast, microbial respiration per gram of soil negatively correlated with bacterial diversity and positively with fungal biomass, suggesting that in the absence of a carbon limitation, decomposition rate is controlled by the amount of fungal biomass. Soils with the addition of grass litter showed a priming effect in the initial stage of decomposition compared to the samples without the addition of litter. Thus, the relationship between microbial diversity and the rate of decomposition may be complex and context dependent.

16.
Front Plant Sci ; 13: 873204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755655

RESUMO

Arbuscular mycorrhiza (AM) and ectomycorrhiza (EcM) are the most abundant and widespread types of mycorrhizal symbiosis, but there is little and sometimes conflicting information regarding the interaction between AM fungi (AMF) and EcM fungi (EcMF) in soils. Their competition for resources can be particularly relevant in successional ecosystems, which usually present a transition from AM-forming herbaceous vegetation to EcM-forming woody species. The aims of this study were to describe the interaction between mycorrhizal fungal communities associated with AM and EcM hosts naturally coexisting during primary succession on spoil banks and to evaluate how this interaction affects growth and mycorrhizal colonization of seedlings of both species. We conducted a greenhouse microcosm experiment with Betula pendula and Hieracium caespitosum as EcM and AM hosts, respectively. They were cultivated in three-compartment rhizoboxes. Two lateral compartments contained different combinations of both host plants as sources of fungal mycelia colonizing the middle compartment, where fungal biomass, diversity, and community composition as well as the growth of each host plant species' seedlings were analyzed. The study's main finding was an asymmetric outcome of the interaction between the two plant species: while H. caespitosum and associated AMF reduced the abundance of EcMF in soil, modified the composition of EcMF communities, and also tended to decrease growth and mycorrhizal colonization of B. pendula seedlings, the EcM host did not have such effects on AM plants and associated AMF. In the context of primary succession, these findings suggest that ruderal AM hosts could hinder the development of EcM tree seedlings, thus slowing the transition from AM-dominated to EcM-dominated vegetation in early successional stages.

17.
Ecol Evol ; 12(12): e9653, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36582773

RESUMO

Heathland restoration using topsoil removal requires the re-colonization of above- and belowground communities. Oribatid mites play a key role in the comminution of organic matter and are frequently early colonizers during succession despite their limited mobility. Whereas the assembly of their communities may take decades, passive dispersal likely dominates colonization processes, but especially dispersal via other animals (phoresy) remains poorly studied. Compared to other potential hosts, movement habits and ecology of small rodents may provide dispersal advantages to oribatid communities. We studied dispersal of oribatid mites via small rodents in restored heathland sites of different age. We measured movement patterns of small rodents and extracted mites from their pelts and nests to estimate annual contributions of these rodents to the dispersal of oribatids. We also discussed phoretic estimates reported on other host groups as a reference. Probability estimates of oribatids in pelts and nests showed lower occurrence frequencies compared to other reported phoretic hosts. However, local rodent communities may aid the dispersal of up to 41,000 oribatid mites per year. We highlight the high diversity of oribatid species mounting rodents, unlike strong species-specific filters reported in other passive pathways. We found that over half (58%) of the oribatid species reproduced asexually and over a third (32%) had a soil-dwelling lifestyle. We also observed that rodents often travel short distances below 40 m, but occasionally reach distances of up to 100 m, especially in earlier successional stages. Synthesis and applications. Our results suggest that rodents may contribute to assembly processes of soil-dwelling oribatid communities given the slow turnover rate of this group in heathlands. This is accomplished through short-distance dispersal, and especially in sites at early stages of succession. To our knowledge, we are the first to quantitatively assess the potential dispersal of oribatid mites via rodents.

18.
Sci Total Environ ; 838(Pt 4): 156603, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35690201

RESUMO

Peatland degradation is tightly connected to hydrological changes and microbial metabolism. To better understand these metabolism processes, more information is needed on how microbial communities and substrate cycling are affected by changing hydrological regimes. These activities should be imprinted in stable isotope bulk values (δ 15N, δ 13C) due to specific isotopic fractionation by different microbial communities, their metabolic pathways and nutrient sources. We hypothesize that stable isotope values and microbial abundance are correlated and act as indicators of different hydrological regimes. We sampled an East-West transect across European fens in 14 areas and conducted a stable isotope (δ 13C, δ 15N) and membrane fatty acid (mFA) analysis. Within each area an undrained, drained and rewetted site was selected. Rewetted sites were separated based on when rewetting occurred. We found differences in the upper layers of all sites in microbial-derived mFAs and stable isotope values corresponding to hydrological regimes. The highest and lowest quantities of microbial-derived mFAs were measured in undrained and drained sites, respectively. Fungal-derived mFAs were especially lower in drained sites. Simultaneously, δ15N stable isotope values were highest in drained sites. In addition, stable isotope values and microbial-derived mFAs showed distinct depth trends. In undrained sites stable isotopes values slightly increased with depth. In drained sites, δ15N values decreased downwards, whereas δ13C values increased. Overall microbial-derived mFAs decreased with depth. These patterns presumably result from anoxic conditions and high peat recalcitrance in the deeper layers. In sites with short time of rewetting, the microbial-derived mFAs and stable isotope values were similar to values of drained sites, while with increasing rewetting time values shifted to those of undrained sites. We conclude that biomarkers indicate that stable isotope values reflect specific microbial metabolic processes, which differ with hydrological regimes, and thus could indicate both drainage and rewetting in fens.


Assuntos
Hidrologia , Microbiota , Biomarcadores , Isótopos de Carbono , Isótopos de Nitrogênio/análise , Solo
19.
Sci Rep ; 12(1): 17362, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253487

RESUMO

Soil invertebrates (i.e., soil fauna) are important drivers of many key processes in soils including soil aggregate formation, water retention, and soil organic matter transformation. Many soil fauna groups directly or indirectly participate in litter consumption. However, the quantity of litter consumed by major faunal groups across biomes remains unknown. To estimate this quantity, we reviewed > 1000 observations from 70 studies that determined the biomass of soil fauna across various biomes and 200 observations from 44 studies on litter consumption by soil fauna. To compare litter consumption with annual litterfall, we analyzed 692 observations from 24 litterfall studies and 183 observations from 28 litter stock studies. The biomass of faunal groups was highest in temperate grasslands and then decreased in the following order: boreal forest > temperate forest > tropical grassland > tundra > tropical forest > Mediterranean ecosystems > desert and semidesert. Tropical grasslands, desert biomes, and Mediterranean ecosystems were dominated by termites. Temperate grasslands were dominated by omnivores, while temperate forests were dominated by earthworms. On average, estimated litter consumption (relative to total litter input) ranged from a low of 14.9% in deserts to a high of 100.4% in temperate grassland. Litter consumption by soil fauna was greater in grasslands than in forests. This is the first study to estimate the effect of different soil fauna groups on litter consumption and related processes at global scale.


Assuntos
Ecossistema , Solo , Biomassa , Florestas , Água
20.
Sci Total Environ ; 816: 151662, 2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-34780822

RESUMO

Per- and polyfluorinated alkyl substances (PFASs) represent a group of highly recalcitrant micropollutants, that continuously endanger the environment. The present work describes the geographical trends of fish contamination by individual PFASs (including new compounds, e.g., Gen-X) assessed by analyzing the muscle tissues of 5 separate freshwater fish species from 10 locations on the Czech section of the Elbe River and its largest tributary, the Vltava River. The data of this study also showed that the majority of the detected PFASs consisted of long-chain representatives (perfluorooctane sulfonate (PFOS), perfluorononanoic acid, perfluorodecanoic acid, and perfluoroundecanoic acid), whereas short-chain PFASs as well as other compounds such as Gen-X were detected in relatively small quantities. The maximum concentrations of the targeted 32 PFASs in fish were detected in the lower stretches of the Vltava and Elbe Rivers, reaching 289.9 ng/g dw, 140.5 ng/g dw, and 162.7 ng/g dw for chub, roach, and nase, respectively. Moreover, the relationships between the PFAS (PFOS) concentrations in fish muscle tissue and isotopic ratios (δ15N and δ13C) were studied to understand the effect of feed composition and position in the river continuum as a proxy for anthropogenic activity. Redundancy analysis and variation partitioning showed that the largest part of the data variability was explained by the interaction of position in the river continuum and δ15N (δ13C) of the fish. The PFAS concentrations increased downstream and were positively correlated with δ15N and negatively correlated with δ13C. A detailed study at one location also demonstrated the significant relationship between δ15N (estimated trophic position) and PFASs (PFOS) concentrations. From the tested physicochemical properties, the molecular mass and number of fluorine substituents seem to play crucial roles in PFAS bioaccumulation.


Assuntos
Ácidos Alcanossulfônicos , Cyprinidae , Poluentes Ambientais , Fluorocarbonos , Poluentes Químicos da Água , Ácidos Alcanossulfônicos/análise , Animais , Monitoramento Ambiental , Fluorocarbonos/análise , Rios , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA