Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Res ; 204(Pt A): 111941, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34474034

RESUMO

Chromium (Cr) pollution has attracted much attention due to its biological toxicity. However, little is known regarding Cr toxicity to soil microorganisms. The present study assesses the toxicity of Cr(VI) on two microbial processes, potential nitrification rate (PNR) and substrate-induced respiration (SIR), in a wide range of agricultural soils and detected the abundance of soil bacteria, fungi, ammonia-oxidizing bacteria and archaea. The toxicity thresholds of 10% and 50% effective concentrations (EC10 and EC50) for PNR varied by 32.18- and 38.66-fold among different soils, while for SIR they varied by 391.21- and 16.31-fold, respectively. Regression model analysis indicated that for PNR, CEC as a single factor explained 27% of the variation in EC10, with soil clay being the key factor explaining 47.3% of the variation in EC50. For SIR, organic matter and pH were found to be the most vital predictors for EC10 and EC50, explaining 34% and 61.1% of variation, respectively. In addition, extended aging time was found to significantly attenuate the toxicity of Cr on PNR. SIR was mainly driven by total bacteria rather than fungi, while PNR was driven by both AOA and AOB. These results were helpful in deriving soil Cr toxicity threshold based on microbial processes, and provided a theoretical foundation for ecological risk assessments and establishing a soil environmental quality criteria for Cr.


Assuntos
Microbiologia do Solo , Solo , Amônia , Cromo/toxicidade , Oxirredução , Filogenia
2.
Sci Total Environ ; 905: 167289, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37741381

RESUMO

Soil chromium (Cr) contamination has become an environmental problem of global concern. However, the joint effects of combined utilization of biochar and arbuscular mycorrhizal (AM) fungal inoculum, which are considered as two promising remediation strategies of soil heavy metal pollutions, on plant Cr resistance are still poorly understood. In this study, a two-factor pot experiment was conducted to investigate how biochar and AM fungus Rhizophagus irregularis regulate Medicago sativa growth, physiological trait, nutrient and Cr uptake, relevant gene expressions, soil properties, and Cr speciation, independently or synergistically. The results showed that biochar notably decreased AM colonization, while biochar and AM fungus could simultaneously increase plant dry biomass. The greatest growth promotion was observed in mycorrhizal shoots at the highest biochar level (50 g kg-1 soil) by 91 times. Both biochar application and AM fungal inoculation enhanced plant photosynthesis and P nutrition, but the promoting effects of AM fungus on them were significantly greater than that of biochar. In addition, the combined application of biochar and AM fungus dramatically reduced shoot and root Cr concentrations by up to 92 % and 78 %, respectively, compared to the non-amended treatment. Meanwhile, down-regulated expressions were observed for metal chelating-related genes. Furthermore, Cr translocation from roots to shoots was reduced by both two soil amendments. Transcriptional levels of genes involved in reactive oxygen species and proline metabolisms were also regulated by biochar application and AM fungal colonization, leading to alleviation of Cr phytotoxicity. Furthermore, AM fungal inoculation slightly elevated soil pH but decreased plant-available soil P, which was, by contrast, lifted by biochar addition. The combined application reduced soil acid-extractable Cr concentration by 40 %. This study provides new insights into comprehensively understanding of the mechanisms of biochar and AM fungi combination on improving plant Cr tolerance.


Assuntos
Micorrizas , Poluentes do Solo , Micorrizas/fisiologia , Raízes de Plantas/metabolismo , Cromo/toxicidade , Cromo/metabolismo , Medicago sativa , Poluentes do Solo/análise , Solo
3.
Sci Total Environ ; 806(Pt 3): 151302, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34743886

RESUMO

Copper (Cu) contamination threatens the stability of soil ecosystems. As important moderators of biochemical processes and soil remediation, the fungal community in contaminated soils has attracted much research interest. In this study, soil fungal diversity and community composition under long-term Cu contamination were investigated based on high-throughput sequencing. The co-occurrence networks were also constructed to display the co-occurrence patterns of the soil fungal community. The results showed that the richness and Chao1 index both significantly increased at 50 mg kg-1 Cu and then significantly decreased at 1600 and 3200 mg kg-1 Cu. Soil fungal diversity was significantly and positively correlated with plant dry weight. Specific tolerant taxa under different Cu contamination gradients were illustrated by linear discriminant analysis effect size (LEfSe). Soil Cu concentration and shoot dry weight were the strongest driving factors influencing fungal composition. The relative abundance of arbuscular mycorrhizal fungi increased first and then declined along with elevating Cu concentrations via FUNGuild analysis. The interactions among fungi were enhanced under light and moderate Cu contamination but weakened under heavy Cu contamination by random matrix theory (RMT)-based molecular ecological network analysis. Penicillium, identified as a keystone taxon in Cu-contaminated soils, had the function of removing heavy metals and detoxification, which might be vital to trigger the resistance of the fungal community to Cu contamination. The results may facilitate the identification of Cu pollution indicators and the development of in situ bioremediation technology for contaminated cultivated fields.


Assuntos
Micobioma , Micorrizas , Poluentes do Solo , Biodegradação Ambiental , Cobre/toxicidade , Ecossistema , Fungos , Micorrizas/química , Solo , Microbiologia do Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA