Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
J Sci Food Agric ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39319598

RESUMO

BACKGROUND: The utilization of chemical fertilizers is a key measure for maintaining tea yield and quality, but excessive use has negative environmental impacts. The substitution of chemical fertilizer with organic fertilizer has been promoted to sustain crop yield and soil quality. However, knowledge gaps regarding the effects of organic substitution on soil quality and tea yield in tea plantations still exist. RESULTS: A field experiment was conducted to investigate the influence of organic substitution treatments (i.e. 25% partial substitution: biogas slurry + green manure + formula fertilizer, BFG; sheep manure + formula fertilizer, OFF; 100% complete substitution: sheep manure + green manure, OG) on the soil quality, tea yield and quality, and nitrogen utilization efficiency in southwestern China. Results showed that all organic substitution treatments slightly increased soil pH, and significantly increased soil organic matter by 13.22-14.88% compared to conventional fertilization (CF). The BFG treatment was the most effective in enhancing the soil quality index, showing increases of 16.80%, 8.37% and 24.87% higher than the CF, OFF and OG treatments, respectively. Tea yield significantly increased under the BFG, OFF and OG treatments by 11.97%, 13.58% and 5.90% compared to CF, respectively. The BFG treatment increased the amino acid content by 7.78% and decreased the tea polyphenol/amino acid ratio by 6.87%. Additionally, the BFG, OFF and OG treatments greatly increased the nitrogen utilization efficiency of young sprouts by 70.71%, 82.54% and 34.28%, respectively. CONCLUSION: Overall, partial organic substitution could effectively improve soil quality while maintaining tea yield. © 2024 Society of Chemical Industry.

2.
Phys Rev Lett ; 128(1): 015701, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35061460

RESUMO

Metals usually have three crystal structures: face-centered cubic (fcc), body-centered cubic (bcc), and hexagonal-close packed (hcp) structures. Typically, metals exhibit only one of these structures at room temperature. Mechanical processing can cause phase transition in metals, however, metals that exhibit all the three crystal structures have rarely been approached, even when hydrostatic pressure or shock conditions are applied. Here, through in situ observation of the atomic-scale bending and tensile process of ∼5 nm-sized Ag nanowires (NWs), we show that bending is an effective method to facilitate fcc-structured Ag to access all the above-mentioned structures. The process of transitioning the fcc structure into a bcc structure, then into an hcp structure, and finally into a re-oriented fcc structure under bending has been witnessed in its entirety. This re-oriented fcc structure is twin-related to the matrix, which leads to twin nucleation without the need for partial dislocation activities. The results of this study advance our understanding of the deformation mechanism of small-sized fcc metals.

3.
Exp Brain Res ; 234(2): 493-7, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26525710

RESUMO

The present study was performed to explore the antinociceptive effects of the galanin receptor 1 agonist M617 in lateral habenula complex in rats. Intra-lateral habenula injection of 0.1, 0.5, 1 or 2 nmol of galanin induced dose-dependent increases in hindpaw withdrawal latencies (HWLs) to noxious thermal and mechanical stimulations in rats. Furthermore, intra-lateral habenula injection of 0.1, 0.5, 1 or 2 nmol of the galanin receptor 1 agonist M617 also induced dose-dependent increases in HWLs to noxious thermal and mechanical stimulations in rats. Interestingly, there were no significant differences between the antinociceptive effects induced by intra-lateral habenula injection of 2 nmol of M617 and 2 nmol of galanin. The results indicate that galanin receptor 1 may be involved in the galanin-induced antinociceptive effects in the lateral habenula.


Assuntos
Analgésicos/administração & dosagem , Bradicinina/análogos & derivados , Galanina/administração & dosagem , Habenula/fisiologia , Medição da Dor/efeitos dos fármacos , Fragmentos de Peptídeos/administração & dosagem , Receptor Tipo 1 de Galanina/agonistas , Receptor Tipo 1 de Galanina/fisiologia , Animais , Bradicinina/administração & dosagem , Habenula/efeitos dos fármacos , Injeções Intraventriculares , Masculino , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley
4.
Microorganisms ; 12(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38792779

RESUMO

The use of green manure can substantially increase the microbial diversity and multifunctionality of soil. Green manuring practices are becoming popular for tobacco production in China. However, the influence of different green manures in tobacco fields has not yet been clarified. Here, smooth vetch (SV), hairy vetch (HV), broad bean (BB), common vetch (CV), rapeseed (RS), and radish (RD) were selected as green manures to investigate their impact on soil multifunctionality and evaluate their effects on enhancing soil quality for tobacco cultivation in southwest China. The biomass of tobacco was highest in the SV treatment. Soil pH declined, and soil organic matter (SOM), total nitrogen (TN), and dissolved organic carbon (DOC) content in CV and BB and activity of extracellular enzymes in SV and CV treatments were higher than those in other treatments. Fungal diversity declined in SV and CV but did not affect soil multifunctionality, indicating that bacterial communities contributed more to soil multifunctionality than fungal communities. The abundance of Firmicutes, Rhizobiales, and Micrococcales in SV and CV treatments increased and was negatively correlated with soil pH but positively correlated with soil multifunctionality, suggesting that the decrease in soil pH contributed to increases in the abundance of functional bacteria. In the bacteria-fungi co-occurrence network, the relative abundance of key ecological modules negatively correlated with soil multifunctionality and was low in SV, CV, BB, and RS treatments, and this was associated with reductions in soil pH and increases in the content of SOM and nitrate nitrogen (NO3--N). Overall, we found that SV and CV are more beneficial for soil multifunctionality, and this was driven by the decrease in soil pH and the increase in SOM, TN, NO3--N, and C- and N-cycling functional bacteria.

5.
Front Plant Sci ; 15: 1410197, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38978518

RESUMO

Fusarium wilt, caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (Foc TR4), poses a significant threat to banana production globally, thereby necessitating effective biocontrol methods to manage this devastating disease. This study investigates the potential of Bacillus siamensis strain JSZ06, isolated from smooth vetch, as a biocontrol agent against Foc TR4. To this end, we conducted a series of in vitro and in vivo experiments to evaluate the antifungal activity of strain JSZ06 and its crude extracts. Additionally, genomic analyses were performed to identify antibiotic synthesis genes, while metabolomic profiling was conducted to characterize bioactive compounds. The results demonstrated that strain JSZ06 exhibited strong inhibitory activity against Foc TR4, significantly reducing mycelial growth and spore germination. Moreover, scanning and transmission electron microscopy revealed substantial ultrastructural damage to Foc TR4 mycelia treated with JSZ06 extracts. Genomic analysis identified several antibiotic synthesis genes, and metabolomic profiling revealed numerous antifungal metabolites. Furthermore, in pot trials, the application of JSZ06 fermentation broth significantly enhanced banana plant growth and reduced disease severity, achieving biocontrol efficiencies of 76.71% and 79.25% for leaves and pseudostems, respectively. In conclusion, Bacillus siamensis JSZ06 is a promising biocontrol agent against Fusarium wilt in bananas, with its dual action of direct antifungal activity and plant growth promotion underscoring its potential for integrated disease management strategies.

6.
Nat Commun ; 15(1): 3281, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627403

RESUMO

Electromagnetic wave lensing, a common physical phenomenon recognized in visible light for centuries, finds extensive applications in manipulating light in optical systems such as telescopes and cameras. Magnetohydrodynamic wave is a common perturbation phenomenon in the corona. By using high spatio-temporal resolution observations from the Solar Dynamics Observatory, here, we report the observation of a magnetohydrodynamic wave lensing in the highly ionized and magnetized coronal plasma, where quasi-periodic wavefronts emanated from a flare converged at a specific point after traversing a coronal hole. The entire process resembles an electromagnetic wave lensing from the source to the focus. Meanwhile, the magnetohydrodynamic wave lensing is well reproduced through a magnetohydrodynamic numerical simulation with full spatio-temporal resolution. We further investigate potential applications for coronal seismology, as the lensing process encodes information on the Alfvén speed, in conjunction with favorable geometric and density variations.

7.
Front Microbiol ; 14: 1233465, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37675431

RESUMO

Legume crops in rice cultivation are typically rotated and incorporated into the soil as green manure to improve soil fertility. Biochar has recently been co-incorporated with green manure to simultaneously stimulate soil organic carbon (SOC) mineralization and increase carbon (C) sequestration. However, few studies examine the effects of the co-incorporation of biochar and green manure on C cycling and the underlying microbial mechanisms in paddy fields. In this study, the effects of the co-incorporation of green manure and biochar on C mineralization, dissolved organic carbon (DOC) characteristics, and microbial community structures were investigated. A pot study was conducted with three treatments: inorganic NPK (NPK), inorganic NPK + green manure (GM), and inorganic NPK + green manure + biochar (GMC). Organic amendments significantly increased cumulative C mineralization, with amounts in the order GMC (3,434 mg·kg-1) > GM (2,934 mg·kg-1) > NPK (2,592 mg·kg-1). Fertilizer treatments had similar effects on DOC concentrations, with amounts in the order GMC (279 mg·kg-1) > GM (255 mg·kg-1) > NPK (193 mg·kg-1). According to fluorescence spectra, the highest microbial humic acid-like fraction and biological index were also in GMC. Co-incorporation of green manure and biochar shifted the composition of bacterial and fungal communities but more importantly, increased fungal network complexity and decreased bacterial network complexity. The increase in fungal network complexity with the increase in DOC concentrations and microbially derived components was the dominant factor in promoting C mineralization. Overall, this study reveals the underlying biochemical mechanism, the interaction between DOC and fungal network of C cycling in paddy soil under the co-incorporation of green manure and biochar management, and provides fundamental knowledge for exploring effective approaches to improve soil fertility and health in the future.

8.
Sci Rep ; 13(1): 12963, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563258

RESUMO

The energy balance in the corona of the Sun is the key to the long-standing coronal heating dilemma, which could be potentially revealed by observational studies of decayless kink oscillations of coronal plasma loops. A bundle of very long off-limb coronal loops with the length of [Formula: see text] Mm and a lifetime of about 2 days are found to exhibit decayless kink oscillations. The oscillations are observed for several hours. The oscillation amplitude is measured at 0.3-0.5 Mm, and the period at 28-33 min. The existence of 30-min periodicity of decayless kink oscillations indicates that the mechanism compensating the wave damping is still valid in such a massive plasma structure. It provides important evidence for the non-resonant origin of decayless kink oscillations with 2-6 min periods, i.e., the lack of their link with the leakage of photospheric and chromospheric oscillations into the corona and the likely role of the broadband energy sources. Magnetohydrodynamic seismology based on the reported detection of the kink oscillation, with the assistance of the differential emission measure analysis and a background coronal model provides us with a comprehensive set of plasma and magnetic field diagnostics, which is of interest as input parameters of space weather models.

9.
Nat Commun ; 14(1): 5705, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709777

RESUMO

Nanosized metals usually exhibit ultrahigh strength but suffer from low homogeneous plasticity. The origin of a strength-ductility trade-off has been well studied for pure metals, but not for random solid solution (RSS) alloys. How RSS alloys accommodate plasticity and whether they can achieve synergy between high strength and superplasticity has remained unresolved. Here, we show that face-centered cubic (FCC) RSS AuCu alloy nanowires (NWs) exhibit superplasticity of ~260% and ultrahigh strength of ~6 GPa, overcoming the trade-off between strength and ductility. These excellent properties originate from profuse hexagonal close-packed (HCP) phase generation (2H and 4H phases), recurrence of reversible FCC-HCP phase transition, and zigzag-like nanotwin generation, which has rarely been reported before. Such a mechanism stems from the inherent chemical inhomogeneity, which leads to widely distributed and overlapping energy barriers for the concurrent activation of multiple plasticity mechanisms. This naturally implies a similar deformation behavior for other highly concentrated solid-solution alloys with multiple principal elements, such as high/medium-entropy alloys. Our findings shed light on the effect of chemical inhomogeneity on the plastic deformation mechanism of solid-solution alloys.

10.
ACS Nano ; 17(23): 23488-23497, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38010413

RESUMO

Permanent structural changes in pure metals that are caused by plastic activity are normally irreparable after unloading. Because of the lack of experimental evidence, it is unclear whether the plastic activity can be repaired as the size of the pure metals decreases to several nanometers; it is also unclear how the metals accommodate the plastic deformation. In this study, the in situ atomic-scale loading and unloading of ∼2 nm Ag nanocrystals was investigated, and three modes of plastic deformation were observed: (i) the phase transition from the face-centered cubic (fcc) phase to the hexagonal close-packed (hcp) phase, (ii) stacking faults, and (iii) deformation twin nucleation. We show that all three modes resulted in structural changes that were reparable, and their generation and restoration during loading and unloading were observed in situ. We discovered that the deformation modes of nanosized metals can be predicted from the ratio of the energy barriers of the fcc-hcp phase transition (ΔγH) and the deformation twin nucleation (ΔγT), which differ from those of the theoretical modes of relatively large-sized metals. The proposed ΔγH/ΔγT criterion provides insights into the deformation mechanism of nanometals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA