RESUMO
Although protein replacement therapy provides effective treatment for hemophilia A patients, about a third of severe patients develop neutralizing inhibitor antibodies to factor VIII. Adoptive transfer of regulatory T cells (Tregs) has shown promise in treating unwanted immune responses. In previous studies, transferred polyclonal Tregs ameliorated the anti-factor VIII immune responses in hemophilia A mice. In addition, factor VIII-primed Tregs demonstrated increased suppressive function. However, antigen-specific Tregs are a small fraction of the total lymphocyte population. To generate large numbers of factor VIII-specific Tregs, the more abundant murine primary CD4+ T cells were lentivirally transduced ex vivo to express Foxp3 and a chimeric antigen receptor specific to factor VIII (F8CAR). Transduced cells significantly inhibited the proliferation of factor VIII-specific effector T cells in suppression assays. To monitor the suppressive function of the transduced chimeric antigen receptor expressing T cells in vivo, engineered CD4+CD25+Foxp3+F8CAR-Tregs were sorted and adoptively transferred into hemophilia A mice that are treated with hydrodynamically injected factor VIII plasmid. Mice receiving engineered F8CAR-Tregs showed maintenance of factor VIII clotting activity and did not develop anti-factor VIII inhibitors, while control CD4+T cell or PBS recipient mice developed inhibitors and had a sharp decrease in factor VIII activity. These results show that CD4+ cells lentivirally transduced to express Foxp3 and F8CAR can promote factor VIII tolerance in a murine model. With further development and testing, this approach could potentially be applied to human hemophilia patients.
Assuntos
Fator VIII/imunologia , Fatores de Transcrição Forkhead/imunologia , Hemofilia A/imunologia , Hemofilia A/terapia , Imunoterapia Adotiva/métodos , Linfócitos T Reguladores/transplante , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Linfócitos T CD4-Positivos/imunologia , Fator VIII/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Terapia Genética/métodos , Células HEK293 , Hemofilia A/metabolismo , Humanos , Tolerância Imunológica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismoRESUMO
Our previous studies demonstrated that intraosseous (IO) infusion of lentiviral vectors (LVs) carrying a modified B domain-deleted factor VIII (FVIII) transgene driven by a megakaryocyte-specific promoter (GP1Bα promoter; G-F8/N6-LV) successfully transduced hematopoietic stem cells (HSCs) to produce FVIII stored in the platelet α-granules. Platelet FVIII corrected the bleeding phenotype with limited efficacy in hemophilia A (HemA) mice with and without preexisting anti-FVIII inhibitors. The present study sought to further enhance the therapeutic efficacy of this treatment protocol by increasing both the efficiency of LV transduction and the functional activity of platelet FVIII. A combined drug regimen of dexamethasone and anti-CD8α monoclonal antibody enhanced the percentage of transduced bone marrow and HSCs over time. In G-F8/N6-LV-treated HemA mice, significant improvement in phenotypic correction was observed on day 84. To improve platelet FVIII functionality, genes encoding FVIII variant F8X10K12 with increased expression or F8N6K12RH with increased functional activity compared with F8/N6 were incorporated into LVs. Treatment with G-F8X10K12-LV in HemA mice produced a higher level of platelet FVIII but induced anti-FVIII inhibitors. After treatment with combined drugs and IO infusion of G-F8/N6K12RH-LV, HemA mice showed significant phenotypic correction without anti-FVIII inhibitor formation. These results indicate that new human FVIII variant F8/N6K12RH combined with immune suppression could significantly enhance the therapeutic efficacy of in vivo platelet-targeted gene therapy for murine HemA via IO delivery. This protocol provides a safe and effective treatment for hemophilia that may be translatable to and particularly beneficial for patients with preexisting inhibitory antibodies to FVIII.