Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 22(8): 100608, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356496

RESUMO

Protein aggregation of amyloid-ß peptides and tau are pathological hallmarks of Alzheimer's disease (AD), which are often resistant to detergent extraction and thus enriched in the insoluble proteome. However, additional proteins that coaccumulate in the detergent-insoluble AD brain proteome remain understudied. Here, we comprehensively characterized key proteins and pathways in the detergent-insoluble proteome from human AD brain samples using differential extraction, tandem mass tag (TMT) labeling, and two-dimensional LC-tandem mass spectrometry. To improve quantification accuracy of the TMT method, we developed a complement TMT-based strategy to correct for ratio compression. Through the meta-analysis of two independent detergent-insoluble AD proteome datasets (8914 and 8917 proteins), we identified 190 differentially expressed proteins in AD compared with control brains, highlighting the pathways of amyloid cascade, RNA splicing, endocytosis/exocytosis, protein degradation, and synaptic activity. To differentiate the truly detergent-insoluble proteins from copurified background during protein extraction, we analyzed the fold of enrichment for each protein by comparing the detergent-insoluble proteome with the whole proteome from the same AD samples. Among the 190 differentially expressed proteins, 84 (51%) proteins of the upregulated proteins (n = 165) were enriched in the insoluble proteome, whereas all downregulated proteins (n = 25) were not enriched, indicating that they were copurified components. The vast majority of these enriched 84 proteins harbor low-complexity regions in their sequences, including amyloid-ß, Tau, TARDBP/TAR DNA-binding protein 43, SNRNP70/U1-70K, MDK, PTN, NTN1, NTN3, and SMOC1. Moreover, many of the enriched proteins in AD were validated in the detergent-insoluble proteome by five steps of differential extraction, proteomic analysis, or immunoblotting. Our study reveals a resource list of proteins and pathways that are exclusively present in the detergent-insoluble proteome, providing novel molecular insights to the formation of protein pathology in AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Proteoma/metabolismo , Detergentes/química , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Encéfalo/metabolismo , Ribonucleoproteína Nuclear Pequena U1/química , Ribonucleoproteína Nuclear Pequena U1/metabolismo
2.
J Proteome Res ; 23(4): 1221-1231, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38507900

RESUMO

Proteins usually execute their biological functions through interactions with other proteins and by forming macromolecular complexes, but global profiling of protein complexes directly from human tissue samples has been limited. In this study, we utilized cofractionation mass spectrometry (CF-MS) to map protein complexes within the postmortem human brain with experimental replicates. First, we used concatenated anion and cation Ion Exchange Chromatography (IEX) to separate native protein complexes in 192 fractions and then proceeded with Data-Independent Acquisition (DIA) mass spectrometry to analyze the proteins in each fraction, quantifying a total of 4,804 proteins with 3,260 overlapping in both replicates. We improved the DIA's quantitative accuracy by implementing a constant amount of bovine serum albumin (BSA) in each fraction as an internal standard. Next, advanced computational pipelines, which integrate both a database-based complex analysis and an unbiased protein-protein interaction (PPI) search, were applied to identify protein complexes and construct protein-protein interaction networks in the human brain. Our study led to the identification of 486 protein complexes and 10054 binary protein-protein interactions, which represents the first global profiling of human brain PPIs using CF-MS. Overall, this study offers a resource and tool for a wide range of human brain research, including the identification of disease-specific protein complexes in the future.


Assuntos
Proteínas , Espectrometria de Massas em Tandem , Humanos , Espectrometria de Massas em Tandem/métodos , Proteínas/química , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia por Troca Iônica/métodos , Encéfalo , Proteoma/análise
3.
Inorg Chem ; 63(16): 7442-7454, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38606439

RESUMO

As electrocatalysts, molecular catalysts with large aromatic systems (such as terpyridine, porphyrin, or phthalocyanine) have been widely applied in the CO2 reduction reaction (CO2RR). However, these monomeric catalysts tend to aggregate due to strong π-π interactions, resulting in limited accessibility of the active site. In light of these challenges, we present a novel strategy of active site isolation for enhancing the CO2RR. Six Ru(Tpy)2 were integrated into the skeleton of a metallo-organic supramolecule by stepwise self-assembly in order to form a rhombus-fused six-pointed star R1 with active site isolation. The turnover frequency (TOF) of R1 was as high as 10.73 s-1 at -0.6 V versus reversible hydrogen electrode (vs RHE), which is the best reported value so far at the same potential to our knowledge. Furthermore, by increasing the connector density on R1's skeleton, a more stable triangle-fused six-pointed star T1 was successfully synthesized. T1 exhibits exceptional stability up to 126 h at -0.4 V vs RHE and excellent TOF values of CO. The strategy of active site isolation and connector density increment significantly enhanced the catalytic activity by increasing the exposure of the active site. This work provides a starting point for the design of molecular catalysts and facilitates the development of a new generation of catalysts with a high catalytic performance.

4.
Biochemistry ; 62(3): 624-632, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35969671

RESUMO

Chemoproteomics is a key platform for characterizing the mode of action for compounds, especially for targeted protein degraders such as proteolysis targeting chimeras (PROTACs) and molecular glues. With deep proteome coverage, multiplexed tandem mass tag-mass spectrometry (TMT-MS) can tackle up to 18 samples in a single experiment. Here, we present a pooling strategy for further enhancing the throughput and apply the strategy to an FDA-approved drug library (95 best-in-class compounds). The TMT-MS-based pooling strategy was evaluated in the following steps. First, we demonstrated the capability of TMT-MS by analyzing more than 15 000 unique proteins (> 12 000 gene products) in HEK293 cells treated with five PROTACs (two BRD/BET degraders and three degraders for FAK, ALK, and BTK kinases). We then introduced a rationalized pooling strategy to separate structurally similar compounds in different pools and identified the proteomic response to 14 pools from the drug library. Finally, we validated the proteomic response from one pool by reprofiling the cells via treatment with individual drugs with sufficient replicates. Interestingly, numerous proteins were found to change upon drug treatment, including AMD1, ODC1, PRKX, PRKY, EXO1, AEN, and LRRC58 with 7-hydroxystaurosporine; C6orf64, HMGCR, and RRM2 with Sorafenib; SYS1 and ALAS1 with Venetoclax; and ATF3, CLK1, and CLK4 with Palbocilib. Thus, pooling chemoproteomics screening provides an efficient method for dissecting the molecular targets of compound libraries.


Assuntos
Proteoma , Proteômica , Humanos , Proteômica/métodos , Células HEK293 , Biblioteca Gênica , Proteoma/análise , Proteólise
5.
Anal Chem ; 94(13): 5325-5334, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35315655

RESUMO

Proteome profiling is a powerful tool in biological and biomedical studies, starting with samples at bulk, single-cell, or single-cell-type levels. Reliable methods for extracting specific cell-type proteomes are in need, especially for the cells (e.g., neurons) that cannot be readily isolated. Here, we present an innovative proximity labeling (PL) strategy for single-cell-type proteomics of mouse brain, in which TurboID (an engineered biotin ligase) is used to label almost all proteins in a specific cell type. This strategy bypasses the requirement of cell isolation and includes five major steps: (i) constructing recombinant adeno-associated viruses (AAVs) to express TurboID driven by cell-type-specific promoters, (ii) delivering the AAV to mouse brains by direct intravenous injection, (iii) enhancing PL labeling by biotin administration, (iv) purifying biotinylated proteins, followed by on-bead protein digestion, and (v) quantitative tandem-mass-tag (TMT) labeling. We first confirmed that TurboID can label a wide range of cellular proteins in human HEK293 cells and optimized the single-cell-type proteomic pipeline. To analyze specific brain cell types, we generated recombinant AAVs to coexpress TurboID and mCherry proteins, driven by neuron- or astrocyte-specific promoters and validated the expected cell expression by coimmunostaining of mCherry and cellular markers. Subsequent biotin purification and TMT analysis identified ∼10,000 unique proteins from a few micrograms of protein samples with excellent reproducibility. Comparative and statistical analyses indicated that these PL proteomes contain cell-type-specific cellular pathways. Although PL was originally developed for studying protein-protein interactions and subcellular proteomes, we extended it to efficiently tag the entire proteomes of specific cell types in the mouse brain using TurboID biotin ligase. This simple, effective in vivo approach should be broadly applicable to single-cell-type proteomics.


Assuntos
Proteoma , Proteômica , Animais , Biotinilação , Encéfalo/metabolismo , Células HEK293 , Humanos , Camundongos , Proteoma/análise , Proteômica/métodos , Reprodutibilidade dos Testes
6.
Genomics ; 112(2): 1768-1780, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31669700

RESUMO

Temporal lobe epilepsy (TLE) is the most prevalent and often devastating form of epilepsy. The molecular mechanism underlying the development of TLE remains largely unclear, which hinders the discovery of effective antiepileptogenic drugs. Here we adopted a systems-level approach integrating transcriptomic profiles of three epileptogenesis stages to identify key regulators underlying epilepsy progression. Associating stage-specific gene meta-signatures with brain cell-specialized modules revealed positive regulation of glial migration and adhesion, cytokine production, and neuron death, and downregulation of synaptic transmission and ion transport during epileptogenesis. We identified 265 key regulators driving these processes and 72 of them were demonstrated associating with seizure frequency and/or hippocampal sclerosis in human TLE. Importantly, the upregulation of FAM107A, LAMB2, LTBP1 and TGIF1, which are mainly involved in nervous system development, were found contributing to both conditions. Our findings present the evolution landscape of epileptogenesis and provide candidate regulators that may serve as potential antiepileptogenic targets.


Assuntos
Epilepsia do Lobo Temporal/genética , Transcriptoma , Animais , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Epilepsia do Lobo Temporal/metabolismo , Evolução Molecular , Perfilação da Expressão Gênica , Genes Supressores de Tumor , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Laminina/genética , Laminina/metabolismo , Proteínas de Ligação a TGF-beta Latente/genética , Proteínas de Ligação a TGF-beta Latente/metabolismo , Camundongos , Neuroglia/metabolismo , Neuroglia/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ratos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transmissão Sináptica , Biologia de Sistemas
7.
J Cell Mol Med ; 24(11): 6083-6095, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32307890

RESUMO

Diabetes mellitus (DM) damages male reproduction at multiple levels, such as endocrine secretion, spermatogenesis and penile erection. We herein investigated the protective effects and mechanism of loganin targeting the advanced glycation end products (AGEs)/receptor for AGEs (RAGE)/p38 mitogen-activated protein kinase (p38MAPK)/NF-κB signalling pathway. Loganin relieved the general DM symptoms and decreased the blood glucose level of KK-Ay DM mice. Haematoxylin-eosin staining demonstrated that loganin ameliorated testicular histology and function and enhanced the activities of testis-specific markers lactate dehydrogenase (LDH), acid phosphatase (ACP) and gamma-glutamyl transferase (γ-GT). Loganin also showed evident anti-oxidative stress, anti-apoptotic and anti-inflammatory effects on DM-induced reproductive damage by restoring glutathione (GSH) level and superoxide dismutase (SOD) activity, as well as reducing reactive oxygen species (ROS) level and Bax/Bcl-2 ratio in vivo and in vitro. Western blotting exhibited that loganin significantly inhibited the AGEs/RAGE/p38MAPK/NF-κB signalling pathway. Acridine orange and ethidium bromide staining (AOEB) and Western blotting showed that loganin in combination with inhibitors of RAGE, p38MAPK and NF-κB exerted stronger anti-apoptotic effects on AGE-induced GC-2 cell damage compared with loganin alone. In conclusion, loganin can protect against DM-induced reproductive damage, probably by suppressing the AGEs/RAGE/p38MAPK/NF-κB pathway.


Assuntos
Apoptose/efeitos dos fármacos , Diabetes Mellitus Experimental/patologia , Produtos Finais de Glicação Avançada/toxicidade , Iridoides/farmacologia , NF-kappa B/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Espermatozoides/patologia , Testículo/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Inflamação/genética , Inflamação/patologia , Iridoides/química , Rim/efeitos dos fármacos , Rim/patologia , Rim/ultraestrutura , Masculino , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Transdução de Sinais , Espermatozoides/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/enzimologia
8.
Brief Bioinform ; 18(2): 321-332, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-26962012

RESUMO

Designing maximally selective ligands that act on individual drug targets with high binding affinity has been the central dogma of drug discovery and development for the past two decades. However, many low-affinity drugs that aim for several targets at the same time are found more effective than the high-affinity binders when faced with complex disease conditions, such as cancers, Alzheimer's disease and cardiovascular diseases. The aim of this study was to appreciate the importance and reveal the features of weak-binding drugs and propose an integrated strategy for discovering them. Weak-binding drugs can be characterized by their high dissociation rates and transient interactions with their targets. In addition, network topologies and dynamics parameters involved in the targets of weak-binding drugs also influence the effects of the drugs. Here, we first performed a dynamics analysis for 33 elementary subgraphs to determine the desirable topology and dynamics parameters among targets. Then, by applying the elementary subgraphs to the mitogen-activated protein kinase (MAPK) pathway, several optimal target combinations were obtained. Combining drug-target interaction prediction with molecular dynamics simulation, we got two potential weak-binding drug candidates, luteolin and tanshinone IIA, acting on these targets. Further, the binding affinity of these two compounds to their targets and the anti-inflammatory effects of them were validated through in vitro experiments. In conclusion, weak-binding drugs have real opportunities for maximum efficiency and may show reduced adverse reactions, which can offer a bright and promising future for new drug discovery.


Assuntos
Descoberta de Drogas , Sistemas de Liberação de Medicamentos , Interações Medicamentosas , Humanos , Ligantes
9.
IUBMB Life ; 70(1): 60-70, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29247598

RESUMO

The aim of this study was to examine the comprehensive neuroprotective mechanism of ligustrazine, which is extracted from Ligusticum Chuanxiong Hort., against vascular dementia (VD) in rats and apoptosis in oxygen and glucose deprivation (OGD) PC12 cells. Rats were subjected to bilateral common carotid artery occlusion (BCCAO) surgery and administered ligustrazine intragastrically for 6 weeks. At the end of the experiments, the hippocampal biomarkers brain-derived neurotrophic factor (BDNF), monocyte chemotactic protein 1 (MCP-1), and homocysteine (Hcy) were examined. In experiments in vitro, OGD PC12 cells were treated with ligustrazine for 0.5, 1, 3, 6, 12, or 24 h. The cell-released biomarkers BDNF, MCP-1, and Hcy were examined. Microscopy, acridine orange-ethidium bromide (AO/EB) staining, and flow cytometry assays were performed to investigate apoptosis. Cleaved caspase-3, Bcl-2 associated X protein (Bax), and B cell lymphoma 2 (Bcl-2) expression was examined using Western blot assays. The results showed that biomarkers, including MCP-1 and Hcy, were significantly increased in both the in vivo and in vitro models, while the BDNF level was significantly decreased compared with the sham or vehicle models. Microscopy, AO/EB staining, and flow cytometry analysis showed that severe cell damage occurred in OGD PC12 cells, and apoptosis played a major role in this environment. Further Western blot studies showed that the apoptosis-related Bax/Bcl-2 protein ratio and cleaved caspase-3 were significantly increased in the experiment. However, ligustrazine profoundly suppressed the imbalance of these biomarkers, reduced cell damage, decreased the Bax/Bcl-2, and downregulated cleaved caspase-3. Pro- and anti-apoptotic biomarkers of multiple pathways including BDNF, MCP-1, and Hcy played a joint role in triggering the activation of the mitochondria-related Bax/Bcl-2 and caspase-3 apoptosis pathway in VD. Ligustrazine attenuated VD by comprehensively regulating BDNF, MCP-1, and Hcy and inactivating the Bax/Bcl-2 and caspase-3 apoptosis pathway. Our data provide novel insight into ligustrazine, which is a promising neuroprotective agent for VD disease treatment strategies. © IUBMB Life, 70(1):60-70, 2018.


Assuntos
Apoptose/efeitos dos fármacos , Caspase 3/genética , Demência Vascular/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Pirazinas/farmacologia , Proteína X Associada a bcl-2/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Artéria Carótida Primitiva/cirurgia , Caspase 3/metabolismo , Hipóxia Celular , Sobrevivência Celular/efeitos dos fármacos , Transtornos Cerebrovasculares , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Demência Vascular/genética , Demência Vascular/metabolismo , Demência Vascular/patologia , Regulação da Expressão Gênica , Glucose/deficiência , Glucose/farmacologia , Homocisteína/metabolismo , Ligusticum/química , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/isolamento & purificação , Células PC12 , Extratos Vegetais/química , Proteínas Proto-Oncogênicas c-bcl-2/agonistas , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pirazinas/isolamento & purificação , Ratos , Ratos Wistar , Transdução de Sinais , Proteína X Associada a bcl-2/antagonistas & inibidores , Proteína X Associada a bcl-2/metabolismo
10.
Bioinformatics ; 31(12): 2007-16, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25667546

RESUMO

MOTIVATION: Drug combinations are a promising strategy for combating complex diseases by improving the efficacy and reducing corresponding side effects. Currently, a widely studied problem in pharmacology is to predict effective drug combinations, either through empirically screening in clinic or pure experimental trials. However, the large-scale prediction of drug combination by a systems method is rarely considered. RESULTS: We report a systems pharmacology framework to predict drug combinations (PreDCs) on a computational model, termed probability ensemble approach (PEA), for analysis of both the efficacy and adverse effects of drug combinations. First, a Bayesian network integrating with a similarity algorithm is developed to model the combinations from drug molecular and pharmacological phenotypes, and the predictions are then assessed with both clinical efficacy and adverse effects. It is illustrated that PEA can predict the combination efficacy of drugs spanning different therapeutic classes with high specificity and sensitivity (AUC = 0.90), which was further validated by independent data or new experimental assays. PEA also evaluates the adverse effects (AUC = 0.95) quantitatively and detects the therapeutic indications for drug combinations. Finally, the PreDC database includes 1571 known and 3269 predicted optimal combinations as well as their potential side effects and therapeutic indications. AVAILABILITY AND IMPLEMENTATION: The PreDC database is available at http://sm.nwsuaf.edu.cn/lsp/predc.php.


Assuntos
Algoritmos , Biologia Computacional/métodos , Bases de Dados de Produtos Farmacêuticos , Combinação de Medicamentos , Teorema de Bayes , Interações Medicamentosas , Sinergismo Farmacológico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Modelos Teóricos , Probabilidade
11.
Neurosci Lett ; 824: 137691, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38373630

RESUMO

Enhancing axonal regeneration is one of the most important processes in treating nerve injuries. Both magnetic and electrical stimulation have the effect of promoting nerve axon regeneration. But few study has investigated the effects of trans-spinal magnetic stimulation (TsMS) combined with electroacupuncture (EA) on nerve regeneration in rats with sciatic nerve injury. In this study, we compared the improvement of neurological function in rats with sciatic nerve crush injuries after 4 weeks of different interventions (EA, TsMS, or TsMS combined with EA). We further explored the morphological and molecular biological alterations following sciatic nerve injury by HE, Masson, RT-PCR, western blotting, immunofluorescence staining and small RNA transcriptome sequencing. The results showed that TsMS combined with EA treatment significantly promoted axonal regeneration, increased the survival rate of neurons, and suppressed denervation atrophy of the gastrocnemius muscle. Subsequent experiments suggested that the combination treatment may play an active role by mediating the miR-539-5p/Sema3A/PlexinA1 signaling axis.


Assuntos
Eletroacupuntura , MicroRNAs , Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Ratos , Animais , Ratos Sprague-Dawley , Semaforina-3A/farmacologia , Axônios , Regeneração Nervosa/fisiologia , Nervo Isquiático/lesões , Neuropatia Ciática/terapia , Traumatismos dos Nervos Periféricos/terapia , MicroRNAs/genética , MicroRNAs/farmacologia
12.
Sci Rep ; 14(1): 9723, 2024 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678068

RESUMO

Secondary lung injury after SCI is a major cause of patient mortality, with apoptosis playing a key role. This study aimed to explore the impact of treadmill training and miR145-5p on the MAPK/Erk signaling pathway and apoptosis in rats with complete SCI. SD rats were used to establish T10 segmental complete SCI models and underwent treadmill training 3, 7, or 14 days postinjury. Various techniques including arterial blood gas analysis, lung wet/dry weight ratio, HE staining, immunofluorescence staining, immunohistochemical staining, qRT-PCR, and Western blotting were employed to assess alterations in lung function and the expression levels of crucial apoptosis-related factors. In order to elucidate the specific mechanism, the impact of miR145-5p on the MAPK/Erk pathway and its role in apoptosis in lung cells were confirmed through miR145-5p overexpression and knockdown experiments. Following spinal cord injury (SCI), an increase in apoptosis, activation of the MAPK/Erk pathway, and impairment of lung function were observed in SCI rats. Conversely, treadmill training resulted in a reduction in alveolar cell apoptosis, suppression of the MAPK/Erk pathway, and enhancement of lung function. The gene MAP3K3 was identified as a target of miR145-5p. The influence of miR145-5p on the MAPK/Erk pathway and its impact on apoptosis in alveolar cells were confirmed through the manipulation of miR145-5p expression levels. The upregulation of miR145-5p in spinal cord injury (SCI) rats led to a reduction in MAP3K3 protein expression within lung tissues, thereby inhibiting the MAPK/Erk signaling pathway and decreasing apoptosis. Contrarily, rats with miR145-5p knockdown undergoing treadmill training exhibited an increase in miR145-5p expression levels, resulting in the inhibition of MAP3K3 protein expression in lung tissues, suppression of the MAPK/Erk pathway, and mitigation of lung cell apoptosis. Ultimately, the findings suggest that treadmill training may attenuate apoptosis in lung cells post-spinal cord injury by modulating the MAP3K3 protein through miR145-5p to regulate the MAPK/Erk signaling pathway.


Assuntos
Apoptose , Sistema de Sinalização das MAP Quinases , MicroRNAs , Condicionamento Físico Animal , Ratos Sprague-Dawley , Traumatismos da Medula Espinal , Animais , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/terapia , Ratos , MicroRNAs/genética , MicroRNAs/metabolismo , Masculino , Pulmão/metabolismo , Pulmão/patologia , Pulmão/fisiopatologia , Células Epiteliais Alveolares/metabolismo , Modelos Animais de Doenças
13.
ACS Appl Mater Interfaces ; 16(28): 37298-37307, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38970147

RESUMO

Interfacial electric field holds significant importance in determining both the polar molecular configuration and surface coverage during electrocatalysis. This study introduces a methodology leveraging the varying electric dipole moment of SO2 under distinct interfacial electric field strengths to enhance the selectivity of the SO2 electroreduction process. This approach presented the first attempt to utilize pulsed voltage application to the Au/PTFE membrane electrode for the control of the molecular configuration and coverage of SO2 on the electrode surface. Remarkably, the modulation of pulse duration resulted in a substantial inhibition of the hydrogen evolution reaction (HER) (FEH2 < 3%) under millisecond pulse conditions (ta = 10 ms, tc = 300 ms, Ea = -0.8 V (vs Hg/Hg2SO4), Ec = -1.8 V (vs Hg/Hg2SO4)), concomitant with a noteworthy enhancement in H2S selectivity (FEH2S > 97%). A comprehensive analysis, incorporating in situ Raman spectroscopy, electrochemical quartz crystal microbalance, COMSOL simulations, and DFT calculations, corroborated the increased selectivity of H2S products was primarily associated with the inherently large dipole moment of the SO2 molecule. The enhancement of the interfacial electric field induced by millisecond pulses was instrumental in amplifying SO2 coverage, activating SO2, facilitating the formation of the pivotal intermediate product *SOH, and effectively reducing the reaction energy barrier in the SO2 reduction process. These findings provide novel insights into the influences of ion and molecular transport dynamics, as well as the temporal intricacies of competitive pathways during the SO2 electroreduction process. Moreover, it underscores the intrinsic correlation between the electric dipole moment and surface-molecule interaction of the catalyst.

14.
Nat Commun ; 15(1): 3113, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600097

RESUMO

Autophagy is a conserved, catabolic process essential for maintaining cellular homeostasis. Malfunctional autophagy contributes to neurodevelopmental and neurodegenerative diseases. However, the exact role and targets of autophagy in human neurons remain elusive. Here we report a systematic investigation of neuronal autophagy targets through integrated proteomics. Deep proteomic profiling of multiple autophagy-deficient lines of human induced neurons, mouse brains, and brain LC3-interactome reveals roles of neuronal autophagy in targeting proteins of multiple cellular organelles/pathways, including endoplasmic reticulum (ER), mitochondria, endosome, Golgi apparatus, synaptic vesicle (SV) for degradation. By combining phosphoproteomics and functional analysis in human and mouse neurons, we uncovered a function of neuronal autophagy in controlling cAMP-PKA and c-FOS-mediated neuronal activity through selective degradation of the protein kinase A - cAMP-binding regulatory (R)-subunit I (PKA-RI) complex. Lack of AKAP11 causes accumulation of the PKA-RI complex in the soma and neurites, demonstrating a constant clearance of PKA-RI complex through AKAP11-mediated degradation in neurons. Our study thus reveals the landscape of autophagy degradation in human neurons and identifies a physiological function of autophagy in controlling homeostasis of PKA-RI complex and specific PKA activity in neurons.


Assuntos
Neurônios , Proteômica , Camundongos , Animais , Humanos , Neurônios/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Autofagia/fisiologia , Homeostase
15.
J Am Soc Mass Spectrom ; 35(6): 1253-1260, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38754071

RESUMO

Accurate and precise quantification is crucial in modern proteomics, particularly in the context of exploring low-amount samples. While the innovative 4D-data-independent acquisition (DIA) quantitative proteomics facilitated by timsTOF mass spectrometers gives enhanced sensitivity and selectivity for protein identification, the diaPASEF (parallel accumulation-serial fragmentation combined with data-independent acquisition) parameters have not been systematically optimized, and a comprehensive evaluation of the quantification is currently lacking. In this study, we conducted a thorough optimization of key parameters on a timsTOF SCP instrument, including sample loading amount (50 ng), ramp/accumulation time (140 ms), isolation window width (20 m/z), and gradient time (60 min). To further improve the identification of proteins in low-amount samples, we utilized different column settings and introduced 0.02% n-dodecyl-ß-d-maltoside (DDM) in the sample reconstitution solution, resulting in a remarkable 19-fold increase in protein identification at the single-cell-equivalent level. Moreover, a comprehensive comparison of protein quantification using a tandem mass tag reporter (TMT-reporter), complement TMT ions (TMTc), and diaPASEF revealed a strong correlation between these methods. Both diaPASEF and TMTc have effectively addressed the issue of ratio compression, highlighting the diaPASEF method's effectiveness in achieving accurate quantification data compared to TMT reporter quantification. Additionally, an in-depth analysis of in-group variation positioned diaPASEF between the TMT-reporter and TMTc methods. Therefore, diaPASEF quantification on the timsTOF SCP instrument emerges as a precise and accurate methodology for quantitative proteomics, especially for samples with small amounts.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Proteômica/métodos , Espectrometria de Massas em Tandem/métodos , Humanos , Proteínas/análise , Proteínas/química
16.
bioRxiv ; 2024 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-39484428

RESUMO

Murine models of Alzheimer's disease (AD) are crucial for elucidating disease mechanisms but have limitations in fully representing AD molecular complexities. We comprehensively profiled age-dependent brain proteome and phosphoproteome ( n > 10,000 for both) across multiple mouse models of amyloidosis. We identified shared pathways by integrating with human metadata, and prioritized novel components by multi-omics analysis. Collectively, two commonly used models (5xFAD and APP-KI) replicate 30% of the human protein alterations; additional genetic incorporation of tau and splicing pathologies increases this similarity to 42%. We dissected the proteome-transcriptome inconsistency in AD and 5xFAD mouse brains, revealing that inconsistent proteins are enriched within amyloid plaque microenvironment (amyloidome). Determining the 5xFAD proteome turnover demonstrates that amyloid formation delays the degradation of amyloidome components, including Aß-binding proteins and autophagy/lysosomal proteins. Our proteomic strategy defines shared AD pathways, identify potential new targets, and underscores that protein turnover contributes to proteome-transcriptome discrepancies during AD progression.

17.
Methods Mol Biol ; 2628: 109-125, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36781782

RESUMO

Blood in the circulatory system carries information of physiological and pathological status of the human body, so blood proteins are often used as biomarkers for diagnosis, prognosis, and therapy. Human blood proteome can be explored by the latest technologies in mass spectrometry (MS), creating an opportunity of discovering new disease biomarkers. The extreme dynamic range of protein concentrations in blood, however, poses a challenge to detect proteins of low abundance, namely, tissue leakage proteins. Here, we describe a strategy to directly analyze undepleted blood samples by extensive liquid chromatography (LC) fractionation and 18-plex tandem-mass-tag (TMT) mass spectrometry. The proteins in blood specimens (e.g., plasma or serum) are isolated by acetone precipitation and digested into peptides. The resulting peptides are TMT-labeled, separated by basic pH reverse-phase (RP) LC into at least 40 fractions, and analyzed by acidic pH RPLC and high-resolution MS/MS, leading to the quantification of ~3000 unique proteins. Further increase of basic pH RPLC fractions and adjustment of the fraction concatenation strategy can enhance the proteomic coverage (up to ~5000 proteins). Finally, the combination of multiple batches of TMT experiments allows the profiling of hundreds of blood samples. This TMT-MS-based method provides a powerful platform for deep proteome profiling of human blood samples.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Humanos , Proteoma/análise , Espectrometria de Massas em Tandem/métodos , Proteômica/métodos , Peptídeos , Biomarcadores
18.
Neuroscience ; 527: 37-51, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37468029

RESUMO

To investigate intermittent theta-burst stimulation (iTBS) effect on ischemic stroke and the underlying mechanism of neurorehabilitation, we developed an ischemia/reperfusion (I/R) injury model in Sprague-Dawley (SD) rats using the middle cerebral artery occlusion/reperfusion (MCAO/r) method. Next, using different behavioral studies, we compared the improvement of the whole organism with and without iTBS administration for 28 days. We further explored the morphological and molecular biological alterations associated with neuronal apoptosis and neuroinflammation by TTC staining, HE staining, Nissl staining, immunofluorescence staining, ELISA, small RNA sequencing, RT-PCR, and western blot assays. The results showed that iTBS significantly protected against neurological deficits and neurological damage induced by cerebral I/R injury. iTBS also significantly decreased brain infarct volume and increased the number of surviving neurons after 28 days. Additionally, it was observed that iTBS decreased synaptic loss, suppressed activation of astrocytes and M1-polarized microglia, and simultaneously promoted M2-polarized microglial activation. Furthermore, iTBS intervention inhibited neuronal apoptosis and exerted a positive impact on the neuronal microenvironment by reducing neuroinflammation in cerebral I/R injured rats. To further investigate the iTBS mechanism, this study was conducted using small RNA transcriptome sequencing of various groups of peri-infarcted tissues. Bioinformatics analysis and RT-PCR discovered the possible involvement of miR-34c-5p in the mechanism of action. The target genes prediction and detection of dual-luciferase reporter genes confirmed that miR-34c-5p could inhibit neuronal apoptosis in cerebral I/R injured rats by regulating the p53/Bax signaling pathway. We also confirmed by RT-PCR and western blotting that miR-34c-5p inhibited Bax expression. In conclusion, our study supports that iTBS is vital in inhibiting neuronal apoptosis in cerebral I/R injured rats by mediating the miR-34c-5p involvement in regulating the p53/Bax signaling pathway.


Assuntos
Isquemia Encefálica , MicroRNAs , Traumatismo por Reperfusão , Ratos , Animais , Ratos Sprague-Dawley , Proteína X Associada a bcl-2/metabolismo , Proteína Supressora de Tumor p53 , Doenças Neuroinflamatórias , MicroRNAs/metabolismo , Isquemia Encefálica/metabolismo , Apoptose , Infarto da Artéria Cerebral Média/metabolismo , Traumatismo por Reperfusão/metabolismo , Transdução de Sinais
19.
ACS Appl Mater Interfaces ; 15(50): 58508-58516, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38062744

RESUMO

The electrocatalytic reduction of SO2 to produce H2S is a critical approach for achieving the efficient utilization of sulfur resources. At the core of this approach for commercial applications lies the imperative need to elevate current density. However, the challenges posed by high current density manifest in the rapid depletion of protons, leading to a decrease in SO2 partial pressure, consequently hampering the generation and separation of H2S. Here, we demonstrate an effective solution to alleviate the problem of insufficient supply of protons by employing Nafion polymer as the proton conductor to modified Cu catalysts surface, creating a proton-enriched layer to boost H2S generation. It was observed that Nafion shortens the hydrogen bonds with water molecules in the electrolyte via its sulfonic acid groups, benefiting the proton transfer and consequently increasing the proton density on the electrode surface by 5-fold. With the Nafion-modified catalyst, the H2S partial current density and separation efficiency reached 205.9 mA·cm-2 (1.01 mmol·cm-2·h-1) and 87.8%, which were 1.34 and 1.22 times that on unmodified Cu, respectively. This work highlights the practicality of fabricating a proton conductor via ionic polymer for the control over product selectivity in pH-sensitive reactions under high current density.

20.
Nat Commun ; 14(1): 7348, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963875

RESUMO

Ubiquitination is a post-translational modification initiated by the E1 enzyme UBA1, which transfers ubiquitin to ~35 E2 ubiquitin-conjugating enzymes. While UBA1 loss is cell lethal, it remains unknown how partial reduction in UBA1 activity is endured. Here, we utilize deep-coverage mass spectrometry to define the E1-E2 interactome and to determine the proteins that are modulated by knockdown of UBA1 and of each E2 in human cells. These analyses define the UBA1/E2-sensitive proteome and the E2 specificity in protein modulation. Interestingly, profound adaptations in peroxisomes and other organelles are triggered by decreased ubiquitination. While the cargo receptor PEX5 depends on its mono-ubiquitination for binding to peroxisomal proteins and importing them into peroxisomes, we find that UBA1/E2 knockdown induces the compensatory upregulation of other PEX proteins necessary for PEX5 docking to the peroxisomal membrane. Altogether, this study defines a homeostatic mechanism that sustains peroxisomal protein import in cells with decreased ubiquitination capacity.


Assuntos
Peroxissomos , Ubiquitina , Humanos , Ubiquitinação , Ubiquitina/metabolismo , Transporte Proteico/fisiologia , Peroxissomos/metabolismo , Membranas Intracelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA