Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 199
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(11): 7288-7294, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38456796

RESUMO

The strongly electron-donating N-heterocyclic imines (NHIs) have been employed as excellent surface anchors for the thermodynamic stabilization of electron-deficient species due to their enhanced nucleophilicity. However, the binding mode and interfacial property of these new ligands are still unclear, representing a bottleneck for advanced applications in surface functionalization and catalysis. Here, NHIs with different side groups have been rationally designed, synthesized, and analyzed on various metal surfaces (Cu, Ag). Our results reveal different binding modes depending on the molecular structure and metal surface. The molecular design enables us to achieve a flat-lying or upright configuration and even a transition between these two binding modes depending on the coverage and time. Importantly, the two binding modes exhibit different degrees of interfacial charge transfer between the molecule and the surface. This study provides essential microscopic insight into the NHI adsorption geometry and interfacial charge transfer for the optimization of heterogeneous catalysts in coordination chemistry.

2.
Phys Chem Chem Phys ; 24(21): 12808-12815, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35593233

RESUMO

Ionic liquids (ILs) interact strongly with many different types of solid surfaces in a wide range of applications, e.g. lubrication, energy storage and conversion, etc. However, due to the nearly immeasurable large number of potential ILs available, identifying the appropriate ILs for specific solid interfaces with desirable properties is a challenge. Theoretical studies are highly useful for effective development of design and applications of these complex molecular systems. However, obtaining reliable force field models and interaction parameters is highly demanding. In this work, we apply a new methodology by deriving the interaction parameters directly from the experimental data, determined by colloid probe atomic force microscopy (CP-AFM). The reliability of the derived interaction parameters is tested by performing molecular dynamics simulations to calculate translational self-diffusion coefficients and comparing them with those obtained from NMR diffusometry.

3.
Angew Chem Int Ed Engl ; 61(13): e202115104, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-34985795

RESUMO

Self-assembly of cyclohexyl cyclic (alkyl)(amino)carbenes (cyCAAC) can be realized and reversibly switched from a close-packed trimer phase to a chainlike dimer phase, enabled by the ring-flip of the cyclohexyl wingtip. Multiple methods including scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations identified a distinct isomer (axial or equatorial chair conformer) in each phase, and consequently support the conclusion regarding the determination of molecular surface geometry on the self-assembly of cyCAAC. Moreover, various substrates such as Ag (111) and Cu (111) are tested to elucidate the importance of cyCAAC-surface interactions on cyCAAC based nanopatterns. These investigations of patterned surfaces prompted a deep understanding of cyCAAC binding mode, surface geometry and reversible self-assembly, which are of paramount significance in the areas of catalysis, biosensor design and surface functionalization.

4.
Small ; 17(28): e2100724, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34018680

RESUMO

Nanospheres lithography (NSL) is an economical technique, which makes use of highly monodispersed nanospheres such as deposition or etch masks for generating patterns with nanoscale features. Embedding nanostructures into organic electronic devices can endow them with unique capabilities and enhanced performance, which have greatly advanced the development of organic electronics. In this review, a brief summary of the methods for the preparation of monodispersed nanospheres is presented. Afterward, the authors highlight the recent advances of a wide variety of applications of nanospheres lithography in organic electronic devices. Finally, the challenges in this field are pointed out, and the future development of this field is discussed.


Assuntos
Nanosferas , Nanoestruturas , Eletrônica , Impressão
5.
Small ; 17(2): e2004143, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33301234

RESUMO

Copper tetracyanoquinodimethane (CuTCNQ) has been investigated around 40 years as a representative bistable material. Meanwhile, micro/nanostructures of CuTCNQ is considered as the prototype of molecular electronics, which have attracted the world's attention and shown great potential applications in nanoelectronics. In this review, methods for synthesis of CuTCNQ micro/nanostructures are first summarized briefly. Then, the strategies for controlling morphologies and sizes of CuTCNQ micro/nanostructures are highlighted. Afterwards, the devices based on these micro/nanostructures are reviewed. Finally, an outlook of future research directions and challenges in this area is presented.

6.
Small ; 17(20): e2008036, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33797192

RESUMO

Advanced fabrication of surface metal-organic complexes with specific coordination configuration and metal centers will facilitate to exploit novel nanomaterials with attractive electronic/magnetic properties. The precise on-surface synthesis provides an appealing strategy for in situ construction of complex organic ligands from simple precursors autonomously. In this paper, distinct organic ligands with stereo-specific conformation are separately synthesized through the well-known dehalogenative coupling. More interestingly, the exo-bent ligands promote the mono-iron chelated complexes with the Fe center significantly decoupled from the surface and of high spin, while the endo-bent ligands lead to bi-iron chelated ones instead with ferromagnetic properties.


Assuntos
Complexos de Coordenação , Ferro , Ligantes , Modelos Moleculares , Conformação Molecular
7.
Small ; 17(35): e2101637, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34288402

RESUMO

Providing fundamental insights in atomic interactions, dedicated methods in atomic force microscopy allow measuring the threshold forces needed to move single adsorbed atoms or molecules. However, the chemical and structural properties of the probe-tip can drastically influence the results. Establishing atomically defined contacts in such experiments, the tips in the present study are functionalized with various chemically and structurally different terminations. Xenon atoms are moved along an atomically defined metal/metal-oxide boundary where all tips show a pulling mechanism and slight force variations, which are assigned to polarization effects within the tip-sample junction. Detaching Xe atoms from the boundary involves a significantly higher energy barrier where chemical reactive Cu-tips cause Xe pickup before any lateral manipulation. Passivating the tip by inert probe particles (Xe or CO) allows further approaching the surface Xe atom. Yet, the small vertical attraction and pronounced tip relaxations prevent reaching sufficient threshold forces inducing manipulation. In contrast, the high structural rigidity of oxygen-terminated Cu-tips allows manipulations even beyond the threshold where they evolve from initial pulling, via sliding to pushing mode. The detailed quantitative analysis of the processes in the atomically defined junctions emphasizes the mechanical and chemical interactions for highly controlled experiments with piconewton sensitivity.


Assuntos
Oxigênio , Microscopia de Força Atômica
8.
Nano Lett ; 20(8): 5922-5928, 2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32510964

RESUMO

A molecular rotor based on N-heterocyclic carbenes (NHCs) has been rationally designed following theoretical predictions, experimentally realized, and characterized. Utilizing the structural tunability of NHCs, a computational screening protocol was first applied to identify NHCs with asymmetric rotational potentials on a surface as a prerequisite for unidirectional molecular rotors. Suitable candidates were then synthesized and studied using scanning tunneling microscopy/spectroscopy (STM/STS), analytical theoretical models, and molecular dynamics simulations. For our best NHC rotor featuring a mesityl N substituent on one side and a chiral naphthylethyl substituent on the other, unidirectional rotation is driven by inelastic tunneling of electrons from the NHC to the STM tip. While electrons preferentially tunnel through the mesityl N substituent, the chiral naphthylethyl substituent controls the directionality. Such NHC-based surface rotors open up new possibilities for the design and construction of functionalized molecular systems with high catalytic applicability and superior stability compared with other classes of molecular rotors.

9.
Angew Chem Int Ed Engl ; 60(1): 281-289, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-32697379

RESUMO

Amplified spontaneous emission (ASE) is intrinsically associated with lasing applications. Inefficient photon energy transfer to ASE is a long-standing issue for organic semiconductors that consist of multiple competing radiative decay pathways, far from being rationally regulated from the perspective of molecular arrangements. Herein, we achieve controllable molecular packing motifs by halogen-bonded cocrystallization, leading to ten times increased radiative decay rate, four times larger ASE radiative decay selectivity and thus remarkable ASE threshold decrease from 223 to 22 µJ cm-2 , albeit with a low photoluminescence quantum yield. We have made an in-depth investigation on the relationship among molecular arrangements, vibration modes, radiative decay profiles and ASE properties. The results suggest that cocrystallization presents a powerful approach to tailor the radiative decay pathways, which is fundamentally important to the development of organic ASE and lasing materials.

10.
Angew Chem Int Ed Engl ; 60(3): 1458-1464, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33197115

RESUMO

The formation of azo compounds via redox cross-coupling of nitroarenes and arylamines, challenging in solution phase chemistry, is achieved by on-surface chemistry. Reaction products are analyzed with a cryogenic scanning tunneling microscope (STM) and X-ray photoelectron spectroscopy (XPS). By using well-designed precursors containing both an amino and a nitro functionality, azo polymers are prepared on surface via highly efficient nitro-amino cross-coupling. Experiments conducted on other substrates and surface orientations reveal that the metal surface has a significant effect on the reaction efficiency. The reaction was further found to proceed from partially oxidized/reduced precursors in dimerization reactions, shedding light on the mechanism that was studied by DFT calculations.

11.
Chemistry ; 26(70): 16727-16732, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32730686

RESUMO

The reactivity of aryl triflates in on-surface C-C coupling is reported. It is shown that the triflate group in aryl triflates enables regioselective homo coupling with preceding or concomitant hydrodetriflation on Cu(111). Three different symmetrical π-systems with two and three triflate functionalities were used as monomers leading to oligomeric conjugated π-systems. The cascade, comprising different intermediates at different reaction temperatures as observed for one of the molecules, proceeds via initial removal of the trifluoromethyl sulfonyl group to give an aryloxy radical which in turn is deoxygenated to the corresponding aryl radical. Thermodynamically driven regioselective 1,2-hydrogen atom transfer leads to a translocated aryl radical which in turn undergoes coupling. For a sterically more hindered bistriflate, where one ortho position was blocked, dehydrogenative coupling occurred at remote position with good regioselectivity. Starting materials, intermediates as well as products were analyzed by scanning tunneling microscopy. Structures and suggested mechanism were further supported by DFT calculations.

12.
Phys Chem Chem Phys ; 22(26): 14941-14952, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32588010

RESUMO

The nanofriction coefficient of ionic liquids (ILs), 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]), on the surfaces of mica and graphite was investigated using atomic force microscopy (AFM). A pronounced layered spatial distribution was found in the IL film formed on the solid substrates and can be divided into 3 well distinguishable regions exhibiting different physical properties with increasing distance from the substrate. We found that the friction coefficient (µ) increases monotonically as the layering thickness decreases, no matter what the thickness of the bulk IL is. This suggests that the layering assembled IL at solid surfaces is more important than the bulk phase in determining the magnitude of the nanoscale friction. The increase in the friction coefficient as the layering thickness decreases is most likely attributed to the assembled ordered IL layers closer to the substrate surfaces having a greater activation barrier for unlocking the surfaces to allow shear.

13.
Angew Chem Int Ed Engl ; 59(47): 21230-21235, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-32822093

RESUMO

Atomically precise tailoring of interface structures is crucial for developing functional materials. We demonstrate an N-heterocyclic carbene (NHC) based molecular tool, which modifies the structure of a gold surface with atomic accuracy by the formation of gold nanorods. After adsorption on the gold surface, individual surface atoms are pulled out by the NHCs, generating single-atom surface defects and mobile NHC-Au species. Atomistic calculations reveal that these molecular "ballbots" can act as assembling tools to dislocate individual surface atoms. The predicted functionality of these carbene-based complexes is confirmed by scanning tunneling microscopy measurements. Cooperative operation of these NHC-Au species induces a step-wise formation of gold nanorods. Consequently, the surface is re-structured by a zipper-type mechanism. Our work presents a foundation to utilize molecular-based nanotools to design surface structures.

14.
Angew Chem Int Ed Engl ; 59(1): 182-186, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31532066

RESUMO

Chiral molecular self-assemblies were usually achieved using short-range intermolecular interactions, such as hydrogen-, metal-organic, and covalent bonding. However, unavoidable surface defects, such as step edges, surface reconstructions, or site dislocations may limit the applicability of short-range chirality recognition. Long-range chirality recognition on surfaces would be an appealing but challenging strategy for chiral reservation across surface defects at long distances. Now, long-range chirality recognition is presented between neighboring 3-bromo-naphthalen-2-ol (BNOL) stripes on an inert Au(111) surface across the herringbone reconstruction as investigated by STM and DFT calculations. The key to achieving such recognition is the herringbone reconstruction-induced local dipole accumulation at the edges of the BNOL stripes. The neighboring stripes are then forced to adopt the same chirality to create the opposite edged dipoles and neutralize the neighbored dipole moments.

15.
Angew Chem Int Ed Engl ; 59(32): 13643-13646, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32267051

RESUMO

The structural properties and binding motif of a strongly σ-electron-donating N-heterocyclic carbene have been investigated on different transition-metal surfaces. The examined cyclic (alkyl)(amino)carbene (CAAC) was found to be mobile on surfaces, and molecular islands with short-range order could be found at high coverage. A combination of scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations highlights how CAACs bind to the surface, which is of tremendous importance to gain an understanding of heterogeneous catalysts bearing CAACs as ligands.

16.
J Am Chem Soc ; 141(1): 315-322, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30560666

RESUMO

Single chains of metal atoms are expected to be perfect one-dimensional nanowires in nanotechnology, due to their quantum nature including tunable electronic or spin coupling strengths. However, it is still rather difficult to fabricate such nanowires with metallic atoms under directional and separation control. Here, we succeeded in building higher-order single diamondoid-chains from the lower-order chains using a chemically well-controlled approach that employs diamondoids on metal surfaces. This approach results in higher-order diamondoid double chains by linking two neighboring single chains, and ultimately forms a central chain consisting of single Cu atoms suspended by the diamantane framework. The suspended Cu atoms are placed above the metal surface with a periodic distance of 0.67 ± 0.01 nm. Our bottom-up approach will allow detailed experimental investigations of the properties of these exciting suspended metal atoms (for example, quantized conductance, spin coupling, as well as transfer, etc.). Furthermore, we also identified different spatial configurations on the metal surfaces in on-surface reaction processes using high-resolution AFM imaging and density functional theory computations. Our findings broaden the on-surface synthesis concept from 2D planar aromatic molecules to 3D bulky aliphatic molecules.

17.
Small ; 15(21): e1900564, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30977978

RESUMO

Dip-pen nanolithography (DPN) is a unique nanofabrication tool that can directly write a variety of molecular patterns on a surface with high resolution and excellent registration. Over the past 20 years, DPN has experienced a tremendous evolution in terms of applicable inks, a remarkable improvement in fabrication throughput, and the development of various derivative technologies. Among these developments, polymer pen lithography (PPL) is the most prominent one that provides a large-scale, high-throughput, low-cost tool for nanofabrication, which significantly extends DPN and beyond. These developments not only expand the scope of the wide field of scanning probe lithography, but also enable DPN and PPL as general approaches for the fabrication or study of nanostructures and nanomaterials. In this review, a focused summary and historical perspective of the technological development of DPN and its derivatives, with a focus on PPL, in one timeline, are provided and future opportunities for technological exploration in this field are proposed.

18.
Phys Chem Chem Phys ; 21(27): 14556-14561, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31215569

RESUMO

Metallic glass (MG) ultrathin films with hierarchical structure were in situ grown and characterized by scanning tunneling microscopy. A reversible dynamic behavior is observed at 77 K indicating a high mobility within the Fe85Sc15 MG ultrathin films. The complete scheme of the phase transition from amorphous solid to supercooled liquid and further to the crystalline phase is depicted. We find Fe85Sc15 MG ultrathin films with a reduction of the glass transition temperature of ∼290 K and an expanded temperature window of the supercooled liquid region of 180 K, which is almost 6 times larger than that of the conventional bulk MG with identical composition.

19.
Nano Lett ; 18(7): 4123-4129, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29878787

RESUMO

Nanostructured surfaces are ideal templates to control the self-assembly of molecular structures toward well-defined functional materials. To understand the initial adsorption process, we have investigated the arrangement and configuration of aromatic hydrocarbon molecules on nanostructured substrates composed of an alternating arrangement of Cu(110) and oxygen-reconstructed stripes. Scanning tunneling microscopy reveals a preferential adsorption of molecules at oxide phase boundaries. Noncontact atomic force microscopy experiments provide a detailed insight into the preferred adsorption site. By combining submolecular resolution imaging with density functional theory calculations, the interaction of the molecule with the phase boundary was elucidated excluding a classical hydrogen bonding. Instead, a complex balance of different interactions is revealed. Our results provide an atomistic picture for the driving forces of the adsorption process. This comprehensive understanding enables developing strategies for the bottom-up growth of functional molecular systems using nanotemplates.

20.
Nano Lett ; 18(8): 4704-4709, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29965769

RESUMO

Molecular rotors on solid surfaces are fundamental components of molecular machines. No matter whether the rotation is activated by heat, electric field or light, it is determined by the intrinsic rotational potential landscape. Therefore, tuning the potential landscape is of great importance for future applications of controlled molecular rotors. Here, using scanning tunneling microscopy (STM), we demonstrate that both tip-molecule distance and sample bias can modify the rotational potential of molecular rotors. We achieve the potential energy difference variations of ∼0.3 meV/pm and ∼18 meV/V between two configurations of a molecular rotor, a tetra- tert-butyl nickel phthalocyanine molecule on Au(111) substrate. Further analysis indicates that the mechanism of modifying the rotational potential is a combination of the van der Waals interaction and the interaction between the molecular dipole and an electric field. This work provides insight into the methods used to modify the effective rotational potential energy of molecular rotors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA