RESUMO
With the rapid expansion of aging biology research, the identification and evaluation of longevity interventions in humans have become key goals of this field. Biomarkers of aging are critically important tools in achieving these objectives over realistic time frames. However, the current lack of standards and consensus on the properties of a reliable aging biomarker hinders their further development and validation for clinical applications. Here, we advance a framework for the terminology and characterization of biomarkers of aging, including classification and potential clinical use cases. We discuss validation steps and highlight ongoing challenges as potential areas in need of future research. This framework sets the stage for the development of valid biomarkers of aging and their ultimate utilization in clinical trials and practice.
Assuntos
Envelhecimento , Longevidade , Humanos , BiomarcadoresRESUMO
Accurate transfer learning of clinical outcomes from one cellular context to another, between cell types, developmental stages, omics modalities or species, is considered tremendously useful. When transferring a prediction task from a source domain to a target domain, what counts is the high quality of the predictions in the target domain, requiring states or processes common to both the source and the target that can be learned by the predictor reflected by shared denominators. These may form a compendium of knowledge that is learned in the source to enable predictions in the target, usually with few, if any, labeled target training samples to learn from. Transductive transfer learning refers to the learning of the predictor in the source domain, transferring its outcome label calculations to the target domain, considering the same task. Inductive transfer learning considers cases where the target predictor is performing a different yet related task as compared with the source predictor. Often, there is also a need to first map the variables in the input/feature spaces and/or the variables in the output/outcome spaces. We here discuss and juxtapose various recently published transfer learning approaches, specifically designed (or at least adaptable) to predict clinical (human in vivo) outcomes based on preclinical (mostly animal-based) molecular data, towards finding the right tool for a given task, and paving the way for a comprehensive and systematic comparison of the suitability and accuracy of transfer learning of clinical outcomes.
Assuntos
Aprendizado de MáquinaRESUMO
BACKGROUND: The combination of senescence triggers with senolytic drugs is considered a promising new approach to cancer therapy. Here, we studied the efficacy of the genotoxic agent etoposide (Eto) and irradiation in inducing senescence of Panc02 pancreatic cancer cells, and the capability of the Bcl-2 inhibitor navitoclax (ABT-263; Nav) to trigger senolysis. METHODS: Panc02 cells were treated with Eto or irradiated with 5-20 Gy before exposure to Nav. Cell survival, proliferation, and senescence were assessed by trypan blue staining, quantification of DNA synthesis, and staining of senescence-associated ß-galactosidase (SA-ß-Gal)-positive cells, respectively. Levels of mRNA were determined by real-time polymerase chain reaction, and protein expression was analyzed by immunoblotting. Panc02 cells were also grown as pancreatic tumors in mice, which were subsequently treated with Eto and Nav. RESULTS: Eto and irradiation had an antiproliferative effect on Panc02 cells that was significantly or tendentially enhanced by Nav. In vivo, Eto and Nav together, but not Eto alone, significantly reduced the proportion of proliferating cells. The expression of the senescence marker γH2AX and tumor infiltration with T-cells were not affected by the treatment. In vitro, almost all Eto-exposed cells and a significant proportion of cells irradiated with 20 Gy were SA-ß-Gal-positive. Application of Nav reduced the percentage of SA-ß-Gal-positive cells after irradiation but not after pretreatment with Eto. In response to triggers of senescence, cultured Panc02 cells showed increased protein levels of γH2AX and the autophagy marker LC3B-II, and higher mRNA levels of Cdkn1a, Mdm2, and PAI-1, while the effects of Nav were variable. CONCLUSIONS: In vitro and in vivo, the combination of senescence triggers with Nav inhibited tumor cell growth more effectively than the triggers alone. Our data also provide some evidence for senolytic effects of Nav in vitro.
RESUMO
As scientists investigated the molecular mechanisms of the biology of aging, they discovered that these are malleable and can enhance healthy longevity by intervening in the drivers of aging, which are leading to disease, dysfunction and death. These exciting observations gave birth to the field of geroscience. As the mechanisms of aging affect almost all mechanisms of life, detailed molecular mechanistic knowledge must be gained or expanded by considering and integrating as many types of data as possible, from genes and transcripts to socioenvironmental factors. Such a large-scale integration of large amounts of data will in turn profit from "deep" bioinformatics analyses that provide insights beyond contextualizing and interpreting the data in the light of knowledge from databases such as the Gene Ontology. The authors suggest that "deep" bioinformatics, employing methods based on artificial intelligence, will be a key ingredient of future analyses.
Assuntos
Biologia Computacional , Geriatria , Humanos , Envelhecimento/genética , Idoso , Inteligência Artificial , Longevidade/genéticaRESUMO
In oocyte biology, the zona pellucida has long been known to operate three extracellular functions downstream of the secretory pathway, namely, encasing the oocytes in ovarian follicles, mediating sperm-oocyte interaction, and preventing premature embryo contact with oviductal epithelium. The present study uncovers a fourth function that is fundamentally distinct from the other three, being critical for embryonic cell survival in mice. Intriguingly, the three proteins of the mouse zona pellucida (ZP1, ZP2, ZP3) were found abundantly present also inside the embryo 4 days after fertilization, as shown by mass spectrometry, immunoblotting, and immunofluorescence. Contrary to current understanding of the roles of ZP proteins, ZP3 was associated more with the cytoskeleton than with secretory vesicles in the subcortical region of metaphase II oocytes and zygotes, and was excluded from regions of cell-cell contact in cleavage-stage embryos. Trim-away-mediated knockdown of ZP3 in fertilized oocytes hampered the first zygotic cleavage, while ZP3 overexpression supported blastocyst formation. Transcriptome analysis of ZP3-knockdown embryos pointed at defects of cytoplasmic translation in the context of embryonic genome activation. This conclusion was supported by reduced protein synthesis in the ZP3-knockdown and by the lack of cleavage arrest when Trim-away was postponed from the one-cell to the late two-cell stage. These data place constraints on the notion that zona proteins only operate in the extracellular space, revealing also a role during the oocyte-to-embryo transition. Ultimately, these data recruit ZP3 into the family of maternal factors that contribute to developmental competence of mouse oocytes.
Assuntos
Sêmen , Zona Pelúcida , Feminino , Camundongos , Masculino , Animais , Zona Pelúcida/metabolismo , Sêmen/metabolismo , Oócitos/metabolismo , Glicoproteínas da Zona Pelúcida/genética , Glicoproteínas da Zona Pelúcida/metabolismo , Folículo Ovariano/metabolismoRESUMO
MOTIVATION: The difficulty to find new drugs and bring them to the market has led to an increased interest to find new applications for known compounds. Biological samples from many disease contexts have been extensively profiled by transcriptomics, and, intuitively, this motivates to search for compounds with a reversing effect on the expression of characteristic disease genes. However, disease effects may be cell line-specific and also depend on other factors, such as genetics and environment. Transcription profile changes between healthy and diseased cells relate in complex ways to profile changes gathered from cell lines upon stimulation with a drug. Despite these differences, we expect that there will be some similarity in the gene regulatory networks at play in both situations. The challenge is to match transcriptomes for both diseases and drugs alike, even though the exact molecular pathology/pharmacogenomics may not be known. RESULTS: We substitute the challenge to match a drug effect to a disease effect with the challenge to match a drug effect to the effect of the same drug at another concentration or in another cell line. This is welldefined, reproducible in vitro and in silico and extendable with external data. Based on the Connectivity Map (CMap) dataset, we combined 26 different similarity scores with six different heuristics to reduce the number of genes in the model. Such gene filters may also utilize external knowledge e.g. from biological networks. We found that no similarity score always outperforms all others for all drugs, but the Pearson correlation finds the same drug with the highest reliability. Results are improved by filtering for highly expressed genes and to a lesser degree for genes with large fold changes. Also a network-based reduction of contributing transcripts was beneficial, here implemented by the FocusHeuristics. We found no drop in prediction accuracy when reducing the whole transcriptome to the set of 1000 landmark genes of the CMap's successor project Library of Integrated Network-based Cellular Signatures. All source code to re-analyze and extend the CMap data, the source code of heuristics, filters and their evaluation are available to propel the development of new methods for drug repurposing. AVAILABILITY: https://bitbucket.org/ibima/moldrugeffectsdb. CONTACT: steffen.moeller@uni-rostock.de. SUPPLEMENTARY INFORMATION: Supplementary data are available at Briefings in Bioinformatics online.
Assuntos
Reposicionamento de Medicamentos , Farmacogenética , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Reprodutibilidade dos Testes , Relação Estrutura-Atividade , TranscriptomaRESUMO
The most important predictors for outcomes after ischemic stroke, that is, for health deterioration and death, are chronological age and stroke severity; gender, genetics and lifestyle/environmental factors also play a role. Of all these, only the latter can be influenced after the event. Recurrent stroke may be prevented by antiaggregant/anticoagulant therapy, angioplasty of high-grade stenoses, and treatment of cardiovascular risk factors. Blood cell composition and protein biomarkers such as C-reactive protein or interleukins in serum are frequently considered as biomarkers of outcome. Here we aim to provide an up-to-date protein biomarker signature that allows a maximum of mechanistic understanding, to predict health deterioration following stroke. We thus surveyed protein biomarkers that were reported to be predictive for outcome after ischemic stroke, specifically considering biomarkers that predict long-term outcome (≥ 3 months) and that are measured over the first days following the event. We classified the protein biomarkers as immuneinflammatory, coagulation-related, and adhesion-related biomarkers. Some of these biomarkers are closely related to cellular senescence and, in particular, to the inflammatory processes that can be triggered by senescent cells. Moreover, the processes that underlie inflammation, hypercoagulation and cellular senescence connect stroke to cancer, and biomarkers of cancer-associated thromboembolism, as well as of sarcopenia, overlap strongly with the biomarkers discussed here. Finally, we demonstrate that most of the outcome-predicting protein biomarkers form a close-meshed functional interaction network, suggesting that the outcome after stroke is partially determined by an interplay of molecular processes relating to inflammation, coagulation, cell adhesion and cellular senescence.
Assuntos
Isquemia Encefálica , AVC Isquêmico , Neoplasias , Acidente Vascular Cerebral , Humanos , Inflamação , Biomarcadores/metabolismoRESUMO
The slowdown, inhibition, or reversal of age-related decline (as a composite of disease, dysfunction, and, ultimately, death) by diet or natural compounds can be defined as dietary geroprotection. While there is no single reliable biomarker to judge the effects of dietary geroprotection, biomarker signatures based on omics (epigenetics, gene expression, microbiome composition) are promising candidates. Recently, omic biomarkers started to supplement established clinical ones such as lipid profiles and inflammatory cytokines. In this review, we focus on human data. We first summarize the current take on genetic biomarkers based on epidemiological studies. However, most of the remaining biomarkers that we describe, whether omics-based or clinical, are related to intervention studies. Then, because of their promising potential in the context of dietary geroprotection, we focus on the effects of berry-based interventions, which up to now have been mostly described employing clinical markers. We provide an aggregation and tabulation of all the recent systematic reviews and meta-analyses that we could find related to this topic. Finally, we present evidence for the importance of the "nutribiography," that is, the influence that an individual's history of diet and natural compound consumption can have on the effects of dietary geroprotection.Supplemental data for this article is available online at https://doi.org/10.1080/10408398.2021.1975638.
Assuntos
Sistema Cardiovascular , Dieta , Humanos , Biomarcadores , FrutasRESUMO
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a disease of the elderly mostly because its development from preneoplastic lesions depends on the accumulation of gene mutations and epigenetic alterations over time. How aging of non-cancerous tissues of the host affects tumor progression, however, remains largely unknown. METHODS: We took advantage of a model of accelerated aging, uncoupling protein 2-deficient (Ucp2 knockout, Ucp2 KO) mice, to investigate the growth of orthotopically transplanted Ucp2 wild-type (WT) PDAC cells (cell lines Panc02 and 6606PDA) in vivo and to study strain-dependent differences of the PDAC microenvironment. RESULTS: Measurements of tumor weights and quantification of proliferating cells indicated a significant growth advantage of Panc02 and 6606PDA cells in WT mice compared to Ucp2 KO mice. In tumors in the knockout strain, higher levels of interferon-γ mRNA despite similar numbers of tumor-infiltrating T cells were observed. 6606PDA cells triggered a stronger stromal reaction in Ucp2 KO mice than in WT animals. Accordingly, pancreatic stellate cells from Ucp2 KO mice proliferated at a higher rate than cells of the WT strain when they were incubated with conditioned media from PDAC cells. CONCLUSIONS: Ucp2 modulates PDAC microenvironment in a way that favors tumor progression and implicates an altered stromal response as one of the underlying mechanisms.
Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Proteína Desacopladora 2/genética , Proteína Desacopladora 2/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Camundongos Knockout , Microambiente Tumoral , Neoplasias PancreáticasRESUMO
BACKGROUND: Disease prevention and health promotion in and for old age have become increasingly more important. Nevertheless, more (national) research and implementation in practice is needed, as the international comparison shows. OBJECTIVE: To develop guiding principles for research and practice on prevention and health promotion in and for old age. MATERIAL AND METHODS: As part of an iterative process, members of the German Society of Gerontology and Geriatrics came together in workshops and symposia to formulate key guiding principles and fields of action for prevention and health promotion. RESULTS: The following were worked out: 1) prevention and health promotion are useful and possible up to oldest age, 2) prevention and health promotion for advanced age should start early, 3) prevention and health promotion must take into account the diversity and heterogeneity of the life situations of old people, 4) prevention and health promotion promote and demand self-determination and participation, 5) prevention of multiple illnesses must be given greater attention, 6) prevention of the need for long-term care and prevention in long-term care must be treated equally, 7) prevention and health promotion must be thought of in terms of life worlds and across sectors, paying particular attention to aspects of social inequality and a focus on resources, 8) prevention and health promotion and the related research must be interdisciplinary and transdisciplinary and be applied at different levels, from molecular to societal. DISCUSSION: The guiding principles outline the focal points of future-oriented ageing, health and healthcare research and open up fields of action but also show the limits of this approach for political decision-makers, researchers and practitioners.
RESUMO
Investigations of genes required in early mammalian development are complicated by protein deposits of maternal products, which continue to operate after the gene locus has been disrupted. This leads to delayed phenotypic manifestations and underestimation of the number of genes known to be needed during the embryonic phase of cellular totipotency. Here we expose a critical role of the gene Cops3 by showing that it protects genome integrity during the 2-cell stage of mouse development, in contrast to the previous functional assignment at postimplantation. This new role is mediated by a substantial deposit of protein (94th percentile of the proteome), divided between an exceptionally stable cortical rim, which is prevalent in oocytes, and an ancillary deposit in the embryonic nuclei. Since protein abundance and stability defeat prospects of DNA- or RNA-based gene inactivation in oocytes, we harnessed a classical method next to an emerging method for protein inactivation: antigen masking (for functional inhibition) versus TRIM21-mediated proteasomal degradation, also known as 'Trim away' (for physical removal). Both resulted in 2-cell embryo lethality, unlike the embryos receiving anti-green fluorescent protein. Comparisons between COPS3 protein-targeted and non-targeted embryos revealed large-scale transcriptome differences, which were most evident for genes associated with biological functions critical for RNA metabolism and for the preservation of genome integrity. The gene expression abnormalities associated with COPS3 inactivation were confirmed in situ by the occurrence of DNA endoreduplication and DNA strand breaks in 2-cell embryos. These results recruit Cops3 to the small family of genes that are necessary for early embryo survival. Overall, assigning genes with roles in embryogenesis may be less safe than assumed, if the protein products of these genes accumulate in oocytes: the inactivation of a gene at the protein level can expose an earlier phenotype than that identified by genetic techniques such as conventional gene silencing.
Assuntos
Blastômeros/metabolismo , Complexo do Signalossomo COP9/fisiologia , Desenvolvimento Embrionário , Oócitos/metabolismo , Proteínas Proto-Oncogênicas/fisiologia , Animais , Blastômeros/ultraestrutura , Complexo do Signalossomo COP9/biossíntese , Complexo do Signalossomo COP9/genética , Sobrevivência Celular , Quebras de DNA , Transferência Embrionária , Desenvolvimento Embrionário/genética , Endorreduplicação , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ontologia Genética , Histonas/biossíntese , Histonas/genética , Proteínas Luminescentes/análise , Camundongos , Microinjeções , Oócitos/ultraestrutura , Peptídeo Hidrolases/biossíntese , Peptídeo Hidrolases/genética , Gravidez , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteoma , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/administração & dosagem , RNA Mensageiro/genética , Proteínas Recombinantes/análise , Ribonucleoproteínas/fisiologia , Transcriptoma , Zigoto/metabolismo , Proteína Vermelha FluorescenteRESUMO
Several biogerontology databases exist that focus on genetic or gene expression data linked to health as well as survival, subsequent to compound treatments or genetic manipulations in animal models. However, none of these has yet collected experimental results of compound-related health changes. Since quality of life is often regarded as more valuable than length of life, we aim to fill this gap with the "Healthy Worm Database" ( http://healthy-worm-database.eu ). Literature describing health-related compound studies in the aging model Caenorhabditis elegans was screened, and data for 440 compounds collected. The database considers 189 publications describing 89 different phenotypes measured in 2995 different conditions. Besides enabling a targeted search for promising compounds for further investigations, this database also offers insights into the research field of studies on healthy aging based on a frequently used model organism. Some weaknesses of C. elegans-based aging studies, like underrepresented phenotypes, especially concerning cognitive functions, as well as the convenience-based use of young worms as the starting point for compound treatment or phenotype measurement are discussed. In conclusion, the database provides an anchor for the search for compounds affecting health, with a link to public databases, and it further highlights some potential shortcomings in current aging research.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Envelhecimento , Animais , Longevidade , Qualidade de VidaRESUMO
Recently, nine Caenorhabditis elegans genes, grouped into two pathways/clusters, were found to be implicated in healthspan in C. elegans and their homologues in humans, based on literature curation, WormBase data mining and bioinformatics analyses. Here, we further validated these genes experimentally in C. elegans. We downregulated the nine genes via RNA interference (RNAi), and their effects on physical function (locomotion in a swim assay) and on physiological function (survival after heat stress) were analysed in aged nematodes. Swim performance was negatively affected by the downregulation of acox-1.1, pept-1, pak-2, gsk-3 and C25G6.3 in worms with advanced age (twelfth day of adulthood) and heat stress resistance was decreased by RNAi targeting of acox-1.1, daf-22, cat-4, pig-1, pak-2, gsk-3 and C25G6.3 in moderately (seventh day of adulthood) or advanced aged nematodes. Only one gene, sad-1, could not be linked to a health-related function in C. elegans with the bioassays we selected. Thus, most of the healthspan genes could be re-confirmed by health measurements in old worms.
Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Estresse Fisiológico , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Humanos , Longevidade/genéticaRESUMO
The lysosomal storage disorder Fabry disease is characterized by a deficiency of the lysosomal enzyme α-Galactosidase A. The observation that missense variants in the encoding GLA gene often lead to structural destabilization, endoplasmic reticulum retention and proteasomal degradation of the misfolded, but otherwise catalytically functional enzyme has resulted in the exploration of alternative therapeutic approaches. In this context, we have investigated proteostasis regulators (PRs) for their potential to increase cellular enzyme activity, and to reduce the disease-specific accumulation of the biomarker globotriaosylsphingosine in patient-derived cell culture. The PRs also acted synergistically with the clinically approved 1-deoxygalactonojirimycine, demonstrating the potential of combination treatment in a therapeutic application. Extensive characterization of the effective PRs revealed inhibition of the proteasome and elevation of GLA gene expression as paramount effects. Further analysis of transcriptional patterns of the PRs exposed a variety of genes involved in proteostasis as potential modulators. We propose that addressing proteostasis is an effective approach to discover new therapeutic targets for diseases involving folding and trafficking-deficient protein mutants.
Assuntos
Doença de Fabry/genética , Doenças por Armazenamento dos Lisossomos/genética , Proteostase/genética , alfa-Galactosidase/genética , 1-Desoxinojirimicina/análogos & derivados , 1-Desoxinojirimicina/uso terapêutico , Biomarcadores/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Doença de Fabry/tratamento farmacológico , Doença de Fabry/enzimologia , Doença de Fabry/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Humanos , Doenças por Armazenamento dos Lisossomos/tratamento farmacológico , Doenças por Armazenamento dos Lisossomos/enzimologia , Doenças por Armazenamento dos Lisossomos/patologia , Lisossomos/enzimologia , Lisossomos/genética , Lisossomos/metabolismo , Mutação de Sentido Incorreto/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Transporte Proteico/efeitos dos fármacos , Esfingosina/análogos & derivados , Esfingosina/metabolismoRESUMO
BACKGROUND: While DNA and RNA methods are routine to disrupt the expression of specific genes, complete understanding of developmental processes requires also protein methods, because: oocytes and early embryos accumulate proteins and these are not directly affected by DNA and RNA methods. When proteins in the oocyte encounter a specific antibody and the TRIpartite Motiv-containing 21 (TRIM21) ubiquitin-protein ligase, they can be committed to degradation in the proteasome, producing a transient functional knock-out that reveals the role of the protein. However, there are doubts about whether this targeted proteolysis could be successfully used to study mammalian development, because duration of the transient effect is unknown, and also because amounts of reagents delivered must be adequate in relation to the amount of target protein, which is unknown, too. RESULTS: We show that the mouse egg contains up to 1E-02 picomoles/protein, as estimated by mass spectrometry using the intensity-based absolute quantification (iBAQ) algorithm. However, the egg can only accommodate ≈1E-04 picomoles of antibody or TRIM21 without incurring toxic effects. Within this framework, we demonstrate that TRIM21-mediated protein depletion efficiently disrupts the embryonic process of trophectoderm formation, which critically depends on the TEA domain family member 4 (Tead4) gene. TEAD4 depletion starting at the 1-cell stage lasts for 3 days prior to a return of gene and protein expression to baseline. This time period is long enough to result in a phenotype entirely consistent with that of the published null mutation and RNA interference studies: significant underexpression of trophectodermal genes Cdx2 and Gata3 and strongly impaired ability of embryos to cavitate and implant in the uterus. Omics data are available via ProteomeXchange (PXD012613) and GEO (GSE124844). CONCLUSIONS: TRIM21-mediated protein depletion can be an effective means to disrupt gene function in mouse development, provided the target gene is chosen carefully and the method is tuned accurately. The knowledge gathered in this study provides the basic know-how (prerequisites, requirements, limitations) to expedite the protein depletion of other genes besides Tead4.
Assuntos
Proteínas de Ligação a DNA/genética , Desenvolvimento Embrionário/genética , Proteínas Musculares/genética , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/metabolismo , Animais , Blastocisto/metabolismo , Fator de Transcrição CDX2/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/metabolismo , Transferência Embrionária , Embrião de Mamíferos/metabolismo , Feminino , Perfilação da Expressão Gênica , Camundongos , Microinjeções , Proteínas Musculares/deficiência , Proteínas Musculares/metabolismo , Oócitos/metabolismo , Fenótipo , Proteólise , Proteoma , RNA Mensageiro/administração & dosagem , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/deficiência , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Zigoto/metabolismoRESUMO
The mammalian zygote is a totipotent cell that generates all the cells of a new organism through embryonic development. However, if one asks about the totipotency of blastomeres after one or two zygotic divisions, opinions differ. As it is impossible to determine the individual developmental potency of early blastomeres in an intact embryo, experiments of blastomere isolation were conducted in various species, showing that two-cell blastomeres could give rise to a new organism when sister cells were separated. A mainstream interpretation was that each of the sister mammalian blastomeres was equally totipotent. However, reevaluation of those experiments raised some doubts about the real prevalence of cases in which this interpretation could truly be validated. We compiled experiments that tested the individual developmental potency of early mammalian blastomeres in a cell-autonomous way (i.e. excluding nuclear transfer and chimera production). We then confronted the developmental abilities with reported molecular differences between sister blastomeres. The reevaluated observations were at odds with the mainstream view: A viable two-cell embryo can already include one non-totipotent blastomere. We were, thus, led to propose a revised model for totipotency continuity based on the construction of the zygote as a mosaic, which accounts for differential inheritance of totipotency-relevant components between sister blastomeres. This takes place with no preordained mechanisms that would ensure a reproducible partition. This model, which is compatible with the body of data on regulative properties of mammalian early embryos, aims at tempering the rigid interpretation that discounted maternal constraints on totipotency.
Assuntos
Blastômeros/fisiologia , Modelos Biológicos , Zigoto/fisiologia , Animais , Humanos , MosaicismoRESUMO
BACKGROUND: The tumor suppressor protein phosphatase and tensin homolog (PTEN) is a key regulator of the PI3K/AKT pathway which is frequently altered in a variety of tumors including a subset of acute B-lymphoblastic leukemias (B-ALL). While PTEN mutations and deletions are rare in B-ALL, promoter hypermethylation and posttranslational modifications are the main pathways of PTEN inactivation. Casein Kinase II (CK2) is often upregulated in B-ALL and phosphorylates both PTEN and DNA methyltransferase 3A, resulting in increased PI3K/AKT signaling and offering a potential mechanism for further regulation of tumor-related pathways. METHODS: Here, we evaluated the effects of CK2 inhibitor CX-4945 alone and in combination with hypomethylating agent decitabine on B-ALL proliferation and PI3K/AKT pathway activation. We further investigated if CX-4945 intensified decitabine-induced hypomethylation and identified aberrantly methylated biological processes after CK2 inhibition. In vivo tumor cell proliferation in cell line and patient derived xenografts was assessed by longitudinal full body bioluminescence imaging and peripheral blood flow cytometry of NSG mice. RESULTS: CX-4945 incubation resulted in CK2 inhibition and PI3K pathway downregulation thereby inducing apoptosis and anti-proliferative effects. CX-4945 further affected methylation patterns of tumor-related transcription factors and regulators of cellular metabolism. No overlap with decitabine-affected genes or processes was detected. Decitabine alone revealed only modest anti-proliferative effects on B-ALL cell lines, however, if combined with CX-4945 a synergistic inhibition was observed. In vivo assessment of CX-4945 in B-ALL cell line xenografts resulted in delayed proliferation of B-ALL cells. Combination with DEC further decelerated B-ALL expansion significantly and decreased infiltration in bone marrow and spleen. Effects in patient-derived xenografts all harboring a t(4;11) translocation were heterogeneous. CONCLUSIONS: We herein demonstrate the anti-leukemic potential of CX-4945 in synergy with decitabine in vitro as well as in vivo identifying CK2 as a potentially targetable kinase in B-ALL.
Assuntos
Antineoplásicos/farmacologia , Caseína Quinase II/antagonistas & inibidores , Epigênese Genética/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Biologia Computacional , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , Metilação de DNA , DNA Metiltransferase 3A , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Camundongos , Naftiridinas/farmacologia , Fenazinas , Fosfatidilinositol 3-Quinases/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: ADAM23 is widely expressed in the embryonic central nervous system and plays an important role in tissue formation. RESULTS: In this study, we showed that ADAM23 contributes to cell survival and is involved in neuronal differentiation during the differentiation of human neural progenitor cells (hNPCs). Upregulation of ADAM23 in hNPCs was found to increase the number of neurons and the length of neurite, while its downregulation decreases them and triggers cell apoptosis. RNA microarray analysis revealed mechanistic insights into genes and pathways that may become involved in multiple cellular processes upon up- or downregulation of ADAM23. CONCLUSIONS: Our results suggest that ADAM23 regulates neuronal differentiation by triggering specific signaling pathways during hNPC differentiation.
Assuntos
Proteínas ADAM/fisiologia , Células-Tronco Neurais/metabolismo , Neurogênese , Transdução de Sinais , Proteínas ADAM/metabolismo , Humanos , Células-Tronco Neurais/fisiologiaRESUMO
The reprogramming process that leads to induced pluripotent stem cells (iPSCs) may benefit from adding oocyte factors to Yamanaka's reprogramming cocktail (OCT4, SOX2, KLF4, with or without MYC; OSK(M)). We previously searched for such facilitators of reprogramming (the reprogrammome) by applying label-free LC-MS/MS analysis to mouse oocytes, producing a catalog of 28 candidates that are (i) able to robustly access the cell nucleus and (ii) shared between mature mouse oocytes and pluripotent embryonic stem cells. In the present study, we hypothesized that our 28 reprogrammome candidates would also be (iii) abundant in mature oocytes, (iv) depleted after the oocyte-to-embryo transition, and (v) able to potentiate or replace the OSKM factors. Using LC-MS/MS and isotopic labeling methods, we found that the abundance profiles of the 28 proteins were below those of known oocyte-specific and housekeeping proteins. Of the 28 proteins, only arginine methyltransferase 7 (PRMT7) changed substantially during mouse embryogenesis and promoted the conversion of mouse fibroblasts into iPSCs. Specifically, PRMT7 replaced SOX2 in a factor-substitution assay, yielding iPSCs. These findings exemplify how proteomics can be used to prioritize the functional analysis of reprogrammome candidates. The LC-MS/MS data are available via ProteomeXchange with identifier PXD003093.
Assuntos
Reprogramação Celular , Oócitos/química , Proteína-Arginina N-Metiltransferases/fisiologia , Fatores de Transcrição SOXB1/fisiologia , Animais , Cromatografia Líquida , Desenvolvimento Embrionário , Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Fator 4 Semelhante a Kruppel , Camundongos , Células-Tronco Pluripotentes/citologia , Proteômica/métodos , Espectrometria de Massas em TandemRESUMO
Human longevity continues to increase world-wide, often accompanied by decreasing birth rates. As a larger fraction of the population thus gets older, the number of people suffering from disease or disability increases dramatically, presenting a major societal challenge. Healthy ageing has therefore been selected by EU policy makers as an important priority ( http://www.healthyageing.eu/european-policies-and-initiatives ); it benefits not only the elderly but also their direct environment and broader society, as well as the economy. The theme of healthy ageing figures prominently in the Horizon 2020 programme ( https://ec.europa.eu/programmes/horizon2020/en/h2020-section/health-demographic-change-and-wellbeing ), which has launched several research and innovation actions (RIA), like "Understanding health, ageing and disease: determinants, risk factors and pathways" in the work programme on "Personalising healthcare" ( https://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/693-phc-01-2014.html ). Here we present our research proposal entitled "ageing with elegans" (AwE) ( http://www.h2020awe.eu/ ), funded by this RIA, which aims for better understanding of the factors causing health and disease in ageing, and to develop evidence-based prevention, diagnostic, therapeutic and other strategies. The aim of this article, authored by the principal investigators of the 17 collaborating teams, is to describe briefly the rationale, aims, strategies and work packages of AwE for the purposes of sharing our ideas and plans with the biogerontological community in order to invite scientific feedback, suggestions, and criticism.