Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Syst Appl Microbiol ; 32(1): 37-48, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19118969

RESUMO

Cylindrospermopsis raciborskii is a species of freshwater, bloom-forming cyanobacterium. C. raciborskii produces toxins, including cylindrospermopsin (hepatotoxin) and saxitoxin (neurotoxin), although non toxin-producing strains are also observed. In spite of differences in toxicity, C. raciborskii strains comprise a monophyletic group, based upon 16S rRNA gene sequence identities (greater than 99%). We performed phylogenetic analyses; 16S rRNA gene and 16S-23S rRNA gene internally transcribed spacer (ITS-1) sequence comparisons, and genomic DNA restriction fragment length polymorphism (RFLP), resolved by pulsed-field gel electrophoresis (PFGE), of strains of C. raciborskii, obtained mainly from the Australian phylogeographic cluster. Our results showed no correlation between toxic phenotype and phylogenetic association in the Australian strains. Analyses of the 16S rRNA gene and the respective ITS-1 sequences (long L, and short S) showed an independent evolution of each ribosomal operon. The genes putatively involved in the cylindrospermopsin biosynthetic pathway were present in one locus and only in the hepatotoxic strains, demonstrating a common genomic organization for these genes and the absence of mutated or inactivated biosynthetic genes in the non toxic strains. In summary, our results support the hypothesis that the genes involved in toxicity may have been transferred as an island by processes of gene lateral transfer, rather than convergent evolution.


Assuntos
Cylindrospermopsis/classificação , Cylindrospermopsis/patogenicidade , Filogenia , Saxitoxina/metabolismo , Uracila/análogos & derivados , Alcaloides , Toxinas Bacterianas , Toxinas de Cianobactérias , Cylindrospermopsis/genética , Cylindrospermopsis/fisiologia , DNA Bacteriano/análise , DNA Bacteriano/genética , DNA Espaçador Ribossômico/análise , DNA Espaçador Ribossômico/genética , Transferência Genética Horizontal , Dados de Sequência Molecular , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Fenótipo , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 23S/genética , Saxitoxina/genética , Análise de Sequência de DNA , Especificidade da Espécie , Uracila/metabolismo
2.
Stand Genomic Sci ; 13: 26, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30344889

RESUMO

Members of the genus Cylindrospermopsis represent an important environmental and health concern. Strains CS-508 and MVCC14 of C. raciborskii were isolated from freshwater reservoirs located in Australia and Uruguay, respectively. While CS-508 has been reported as non-toxic, MVCC14 is a saxitoxin (STX) producer. We annotated the draft genomes of these C. raciborskii strains using the assembly of reads obtained from Illumina MiSeq sequencing. The final assemblies resulted in genome sizes close to 3.6 Mbp for both strains and included 3202 ORFs for CS-508 (in 163 contigs) and 3560 ORFs for MVCC14 (in 99 contigs). Finally, both the average nucleotide identity (ANI) and the similarity of gene content indicate that these two genomes should be considered as strains of the C. raciborskii species.

3.
Genome Announc ; 4(4)2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27563040

RESUMO

Cylindrospermopsis raciborskii is a freshwater cyanobacterium producing bloom events and toxicity in drinking water source reservoirs. We present the first genome sequence for C. raciborskii CS505 (Australia), containing one 4.1-Mbp chromosome and one 110-Kbp plasmid having G+C contents of 40.3% (3933 genes) and 39.3% (111 genes), respectively.

4.
Toxicon ; 56(8): 1350-61, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20692275

RESUMO

The toxigenic freshwater cyanobacterium Cylindrospermopsis raciborskii T3 has been used as a model to study and elucidate the biosynthetic pathway of tetrahydropurine neurotoxins associated with paralytic shellfish poisoning (PSP). There are nevertheless several inconsistencies and contradictions in the toxin profile of this strain as published by different research groups, and claimed to include carbamoyl (STX, NEO, GTX2/3), decarbamoyl (dcSTX), and N-sulfocarbamoyl (C1/2, B1) derivatives. Our analysis of the complete genome of another PSP toxin-producing cyanobacterium, Raphidiopsis brookii D9, which is closely related to C. raciborskii T3, resolved many issues regarding the correlation between biosynthetic pathways, corresponding genes and the T3 toxin profile. The putative sxt gene cluster in R. brookii D9 has a high synteny with the T3 sxt cluster, with 100% nucleotide identity among the shared genes. We also compared the PSP toxin profile of the strains by liquid chromatography coupled to mass spectrometry (LC-MS/MS). In contrast to published reports, our reassessment of the PSP toxin profile of T3 confirmed production of only STX, NEO and dcNEO. We gained significant insights via correlation between specific sxt genes and their role in PSP toxin synthesis in both D9 and T3 strains. In particular, analysis of sulfotransferase functions for SxtN (N-sulfotransferase) and SxtSUL (O-sulfotransferase) enzymes allowed us to propose an extension of the PSP toxin biosynthetic pathway from STX to the production of the derivatives GTX2/3, C1/2 and B1. This is a significantly revised view of the genetic mechanisms underlying synthesis of sulfated and sulfonated STX analogues in toxigenic cyanobacteria.


Assuntos
Toxinas Bacterianas/química , Cylindrospermopsis/química , Sulfotransferases/fisiologia , Toxinas Bacterianas/biossíntese , Toxinas Bacterianas/isolamento & purificação , Cromatografia Líquida , Cylindrospermopsis/genética , Genes Bacterianos , Genoma Bacteriano , Dados de Sequência Molecular , Família Multigênica , Análise de Sequência de DNA , Sulfotransferases/genética , Espectrometria de Massas em Tandem
5.
PLoS One ; 5(2): e9235, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20169071

RESUMO

Cyanobacterial morphology is diverse, ranging from unicellular spheres or rods to multicellular structures such as colonies and filaments. Multicellular species represent an evolutionary strategy to differentiate and compartmentalize certain metabolic functions for reproduction and nitrogen (N(2)) fixation into specialized cell types (e.g. akinetes, heterocysts and diazocytes). Only a few filamentous, differentiated cyanobacterial species, with genome sizes over 5 Mb, have been sequenced. We sequenced the genomes of two strains of closely related filamentous cyanobacterial species to yield further insights into the molecular basis of the traits of N(2) fixation, filament formation and cell differentiation. Cylindrospermopsis raciborskii CS-505 is a cylindrospermopsin-producing strain from Australia, whereas Raphidiopsis brookii D9 from Brazil synthesizes neurotoxins associated with paralytic shellfish poisoning (PSP). Despite their different morphology, toxin composition and disjunct geographical distribution, these strains form a monophyletic group. With genome sizes of approximately 3.9 (CS-505) and 3.2 (D9) Mb, these are the smallest genomes described for free-living filamentous cyanobacteria. We observed remarkable gene order conservation (synteny) between these genomes despite the difference in repetitive element content, which accounts for most of the genome size difference between them. We show here that the strains share a specific set of 2539 genes with >90% average nucleotide identity. The fact that the CS-505 and D9 genomes are small and streamlined compared to those of other filamentous cyanobacterial species and the lack of the ability for heterocyst formation in strain D9 allowed us to define a core set of genes responsible for each trait in filamentous species. We presume that in strain D9 the ability to form proper heterocysts was secondarily lost together with N(2) fixation capacity. Further comparisons to all available cyanobacterial genomes covering almost the entire evolutionary branch revealed a common minimal gene set for each of these cyanobacterial traits.


Assuntos
Proteínas de Bactérias/genética , Cianobactérias/genética , Cylindrospermopsis/genética , Genoma Bacteriano/genética , Toxinas Bacterianas/metabolismo , Cianobactérias/classificação , Cianobactérias/metabolismo , Cylindrospermopsis/citologia , Cylindrospermopsis/ultraestrutura , Evolução Molecular , Microscopia Eletrônica de Transmissão , Família Multigênica/genética , Fixação de Nitrogênio/genética , Filogenia , Sequências Repetitivas de Ácido Nucleico/genética , Análise de Sequência de DNA , Especificidade da Espécie , Sintenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA