Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 487
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biol Reprod ; 111(1): 174-185, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38501810

RESUMO

Interferon-gamma (IFNG) is a pro-inflammatory cytokine secreted by the porcine conceptus (embryo and extra-embryonic membranes) during the peri-implantation period of pregnancy. IFNG modifies the endometrial inflammatory immune response and is required for the implantation and survival of the conceptus. It is not known how IFNG from the conceptus trophectoderm is transported across the endometrial luminal epithelium (LE). In the present study, immunofluorescence analyses detected immunoreactive IFNG protein in both the trophectoderm and endometrial LE on Day 15 of pregnancy, while our previous research localized IFNG mRNA only to conceptus trophectoderm. Using minced endometrial explants to disrupt the barrier posed by the intact endometrial LE, treatment with recombinant IFNG induced the expression of genes that were not induced when IFNG was infused into the uterine lumen in vivo by McLendon et al. (Biology of Reproduction. 2020;103(5):1018-1029). We hypothesized that during pregnancy extracellular vesicles (EVs) serve as intercellular signaling vehicles to transport conceptus-derived IFNG across the intact endometrial LE and into the stromal compartment of the uterus. Western blotting detected the presence of IFNG in EVs isolated from the uterine fluid of pregnant gilts, but not nonpregnant gilts. Real-time PCR demonstrated increased expression of IFNG-stimulated genes in EV-treated endometrial explants and EV-mediated IFNG transport was confirmed in whole uterine sections cultured with EVs from Day 15 of pregnancy. These results suggest that EVs are involved in IFNG transport across the endometrial LE to enable paracrine communication between the conceptus and cells within the endometrial stroma.


Assuntos
Endométrio , Vesículas Extracelulares , Interferon gama , Comunicação Parácrina , Animais , Feminino , Endométrio/metabolismo , Interferon gama/metabolismo , Interferon gama/farmacologia , Vesículas Extracelulares/metabolismo , Suínos , Gravidez , Embrião de Mamíferos/metabolismo , Implantação do Embrião/fisiologia
2.
Biol Reprod ; 111(1): 148-158, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38501845

RESUMO

Fructose, the most abundant hexose sugar in fetal fluids and the blood of sheep and other ungulates and cetaceans, is synthesized from glucose via the polyol pathway in trophectoderm and chorion. However, the cell-specific and temporal expression of enzymes for the synthesis and metabolism of fructose in sheep conceptuses (embryo and placental membranes) and placentomes has not been characterized. This study characterized key enzymes involved in fructose synthesis and metabolism by ovine conceptuses throughout pregnancy. Day 17 conceptuses expressed mRNAs for the polyol pathway (SORD and AKR1B1) and glucose and fructose metabolism (HK1, HK2, G6PD, OGT, and FBP), but not those required for gluconeogenesis (G6Pase or PCK). Ovine placentomes also expressed mRNAs for SORD, AKR1B1, HK1, and OGT. Fructose can be metabolized via the ketohexokinase (KHK) pathway, and isoforms, KHK-A and KHK-C, were expressed in ovine conceptuses from Day 16 of pregnancy and placentomes during pregnancy in a cell-specific manner. The KHK-A protein was more abundant in the trophectoderm and cotyledons of placentomes, while KHK-C protein was more abundant in the endoderm of Day 16 conceptuses and the chorionic epithelium in placentomes. Expression of KHK mRNAs in placentomes was greatest at Day 30 of pregnancy (P < 0.05), but not different among days later in gestation. These results provide novel insights into the synthesis and metabolism of fructose via the uninhibited KHK pathway in ovine conceptuses to generate ATP via the tricarboxylic cycle, as well as substrates for the pentose cycle, hexosamine biosynthesis pathway, and one-carbon metabolism required for conceptus development throughout pregnancy.


Assuntos
Frutose , Glucose , Placenta , Animais , Feminino , Frutose/metabolismo , Gravidez , Ovinos/metabolismo , Glucose/metabolismo , Placenta/metabolismo , Redes e Vias Metabólicas/genética , Embrião de Mamíferos/metabolismo
3.
Biol Reprod ; 111(3): 694-707, 2024 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-38836439

RESUMO

In pigs, the majority of embryonic mortality occurs when free-floating conceptuses (embryos/fetuses and associated placental membranes) elongate, and the uterine-placental interface undergoes folding and develops areolae. Both periods involve proliferation, migration, and changes in morphology of cells that require adenosine triphosphate (ATP). We hypothesize that insufficient ATP in conceptus and uterine tissues contributes to conceptus loss in pigs. Creatine is stored in cells as phosphocreatine for ATP regeneration through the creatine-creatine kinase- phosphocreatine pathway. However, the expression of components of this pathway in pigs has not been examined throughout gestation. Results of qPCR analyses indicated increases in AGAT, GAMT, CKM, CKB, and SLC6A8 mRNAs in elongating porcine conceptuses, and immunofluorescence microscopy localized guanidinoacetate N-methyltransferase, creatine kinase M, and creatine kinase B proteins to the trophectoderm of elongating conceptuses, to the columnar chorionic epithelial cells at the bottom of chorioallantoic troughs, and to endometrial luminal epithelium at the tops of the endometrial ridges of uterine-placental folds on Days 40, 60, and 90 of gestation. Guanidinoacetate N-methyltransferase protein is expressed in endometrial luminal epithelium at the uterine-placental interface, but immunostaining is more intense in luminal epithelium at the bottoms of the endometrial ridges. Results of this study indicate that key elements of the pathway for creatine metabolism are expressed in cells of the conceptus, placenta, and uterus for potential production of ATP during two timepoints in pregnancy with a high demand for energy; elongation of the conceptus for implantation and development of uterine-placental folding during placentation.


Assuntos
Trifosfato de Adenosina , Creatina , Placenta , Útero , Animais , Feminino , Creatina/metabolismo , Gravidez , Suínos , Útero/metabolismo , Trifosfato de Adenosina/metabolismo , Placenta/metabolismo , Desenvolvimento Embrionário/fisiologia , Embrião de Mamíferos/metabolismo
4.
Biol Reprod ; 111(1): 159-173, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38531778

RESUMO

Lactate, an abundant molecule in fetal fluids and blood of mammalian species, is often overlooked as a metabolic waste product generated during pregnancy. Most of the glucose and fructose consumed by ovine conceptuses is converted to lactate, but proteins involved in lactate metabolism and transport have not been investigated. This study characterized total lactate produced by ovine conceptuses throughout gestation, as well as expression of mRNAs and proteins involved in lactate metabolism. Lactate increased in abundance in the uterine lumen during the preimplantation period and was more abundant than pyruvate. The abundance of lactate in allantoic and amniotic fluids increased with advancing days of gestation and most abundant on Day 125 of pregnancy (P < 0.05). Lactate dehydrogenase subunits A (converts pyruvate to lactate) and B (converts lactate to pyruvate) were expressed by conceptuses throughout gestation. Lactate is transported via monocarboxylic acid transporters SLC16A1 and SLC16A3, both of which were expressed by the conceptus throughout gestation. Additionally, the interplacentomal chorioallantois from Day 126 expressed SLC16A1 and SLC16A3 and transported lactate across the tissue. Hydrocarboxylic acid receptor 1 (HCAR1), a receptor for lactate, was localized to the uterine luminal and superficial glandular epithelia of pregnant ewes throughout gestation and conceptus trophectoderm during the peri-implantation period of gestation. These results provide novel insights into the spatiotemporal profiles of enzymes, transporters, and receptor for lactate by ovine conceptuses throughout pregnancy.


Assuntos
Frutose , Glucose , Ácido Láctico , Animais , Feminino , Gravidez , Ácido Láctico/metabolismo , Ácido Láctico/sangue , Ovinos , Glucose/metabolismo , Frutose/metabolismo , Redes e Vias Metabólicas/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transporte Biológico , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
5.
Reproduction ; 168(4)2024 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-39028589

RESUMO

In Brief: The trophectoderm of the elongating conceptuses of cattle, sheep, and pigs secrete high amounts of interferons that increase or induce the expression of interferon-stimulated genes (ISGs) in the endometrium. Research concerning ISGs, performed from 1995 through 2023, is reviewed in this manuscript. Abstract: Expression of the classical interferon (IFN) stimulated genes (ISGs) increases in the endometrial stroma and glandular epithelium (GE) through activation of signal transducer and activator of transcription (STAT) signaling in response to the secretion of IFN tau (IFNT) and IFN gamma (IFNG) by the conceptuses of ruminants, including cattle and sheep, and pigs, respectively. The first of the classical ISGs to be characterized was ISG15 in cattle. Classical ISGs are not expressed by the endometrial luminal epithelium (LE) due to the expression of interferon regulatory factor 2 (IRF2) in the LE that prevents the expression of ISGs in the LE. Classical ISG expression in the endometrium serves as a reliable indicator of conceptus health and elongation in cattle. There are also nonclassical ISGs that are upregulated in endometrial LE in response to progesterone (P4) that are further stimulated by IFNT in sheep, the intracellular signaling pathway responsible for IFN effects on expression is unknown. ISGs are also upregulated in extrauterine tissues including CL and peripheral blood mononuclear cells (PBMCs). The expression of ISGs by the PBMCs of cattle serves as an early prognosticator of pregnancy. The physiological roles of ISGs remain obscure, but evidence suggests that they are at least in part involved in modifying the immune system to support endometrial remodeling necessary for the successful implantation of the conceptus. Our understanding of these ISGs is primarily the result of work from the laboratories of Drs Fuller Bazer, Thomas (Tod) Hansen, Gregory Johnson, Hakhyun Ka, Patrick Lonergan, Troy Ott, and Thomas Spencer.


Assuntos
Endométrio , Interferons , Animais , Feminino , Gravidez , Bovinos , Ovinos , Endométrio/metabolismo , Interferons/metabolismo , Interferons/genética , Suínos
6.
Adv Exp Med Biol ; 1446: 155-175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625528

RESUMO

The bone is a large and complex organ (12-15% of body weight) consisting of specialized connective tissues (bone matrix and bone marrow), whereas joints are composed of cartilage, tendons, ligaments, synovial joint capsules and membranes, and a synovial joint cavity filled with synovial fluid. Maintaining healthy bones and joints is a dynamic and complex process, as bone deposition (formation of new bone materials) and resorption (breakdown of the bone matrix to release calcium and phosphorus) are the continuous processes to determine bone balance. Bones are required for locomotion, protection of internal organs, and have endocrine functions to maintain mineral homeostasis. Joints are responsible for resisting mechanical stress/trauma, aiding in locomotion, and supporting the overall musculoskeletal system. Amino acids have multiple regulatory, compositional, metabolic, and functional roles in maintaining the health of bones and joints. Their disorders are prevalent in mammals and significantly reduce the quality of life. These abnormalities in companion animals, specifically cats and dogs, commonly lead to elective euthanasia due to the poor quality of life. Multiple disorders of bones and joints result from genetic predisposition and are heritable, but other factors such as nutrition, growth rate, trauma, and physical activity affect how the disorder manifests. Treatments for cats and dogs are primarily to slow the progression of these disorders and assist in pain management. Therapeutic supplements such as Cosequin and formulated diets rich in amino acids are used commonly as treatments for companion animals to reduce pain and slow the progression of those diseases. Also, amino acids (e.g., taurine, arginine, glycine, proline, and 4-hydroxyproline), and glucosamine reduce inflammation and pain in animals with bone and joint disorders. Gaining insight into how amino acids function in maintaining bone and joint health can aid in developing preventative diets and therapeutic supplementations of amino acids to improve the quality of life in companion animals.


Assuntos
Aminoácidos , Qualidade de Vida , Gatos , Cães , Animais , Articulações , Matriz Óssea , Prolina , Mamíferos
7.
Biol Reprod ; 109(6): 954-964, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-37676255

RESUMO

Tissue-nonspecific alkaline phosphatase (TNSALP; encoded by ALPL gene) has a critical role in the regulation of phosphate homeostasis postnatally. However, the utero-placental expression of TNSALP and the role in phosphate transport in pregnancy is poorly understood. Estrous cycles of ewes were synchronized, and ewes were euthanized and hysterectomized on Days 1, 9, or 14 of the estrous cycle or bred to fertile rams and euthanized and hysterectomized on Days 9, 12, 17, 30, 50, 70, 90, 110, or 125 of pregnancy. The expression of ALPL mRNA, immunolocalization of TNSALP protein, and quantification and localization of TNSALP enzymatic activity was performed on ovine endometria and placentomes. Day of the estrous cycle did not alter ALPL mRNA expression or enzymatic activity of TNSALP. TNSALP protein localized to uterine epithelial and stromal cells, blood vessels, myometrium, caruncular, and cotyledonary stroma. TNSALP activity was localized to uterine epithelia, blood vessels, caruncular stroma (from Day 70 of gestation), and the apical surface of chorionic epithelia (from Day 50 of gestation). TNSALP protein and activity localized to the apical surface of uterine epithelia during the estrous cycle and in early pregnancy. Endometrial TNSALP enzymatic activity was downregulated on Days 17 and 30 of gestation (P < 0.05). Expression of ALPL mRNA decreased in late gestation in endometria and placentomes (P < 0.05). TNSALP activity peaked in placentomes on Days 70 and 90 of gestation. Collectively, these results suggest a potential role of TNSALP in the regulation of phosphate transport and homeostasis at the maternal-conceptus interface in ruminants.


Assuntos
Fosfatase Alcalina , Placenta , Gravidez , Ovinos , Animais , Feminino , Masculino , Placenta/metabolismo , Fosfatase Alcalina/metabolismo , Útero/metabolismo , Endométrio/metabolismo , Carneiro Doméstico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fosfatos/metabolismo
8.
Biol Reprod ; 109(1): 107-118, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37171613

RESUMO

The placenta requires high levels of adenosine triphosphate to maintain a metabolically active state throughout gestation. The creatine-creatine kinase-phosphocreatine system is known to buffer adenosine triphosphate levels; however, the role(s) creatine-creatine kinase-phosphocreatine system plays in uterine and placental metabolism throughout gestation is poorly understood. In this study, Suffolk ewes were ovariohysterectomized on Days 30, 50, 70, 90, 110 and 125 of gestation (n = 3-5 ewes/per day, except n = 2 on Day 50) and uterine and placental tissues subjected to analyses to measure metabolites, mRNAs, and proteins related to the creatine-creatine kinase-phosphocreatine system. Day of gestation affected concentrations and total amounts of guanidinoacetate and creatine in maternal plasma, amniotic fluid and allantoic fluid (P < 0.05). Expression of mRNAs for arginine:glycine amidinotransferase, guanidinoacetate methyltransferase, creatine kinase B, and solute carrier 16A12 in endometria and for arginine:glycine amidinotransferase and creatine kinase B in placentomes changed significantly across days of gestation (P < 0.05). The arginine:glycine amidinotransferase protein was more abundant in uterine luminal epithelium on Days 90 and 125 compared to Days 30 and 50 (P < 0.01). The chorionic epithelium of placentomes expressed guanidinoacetate methyltransferase and solute carrier 6A13 throughout gestation. Creatine transporter (solute carrier 6A8) was expressed by the uterine luminal epithelium and trophectoderm of placentomes throughout gestation. Creatine kinase (creatine kinase B and CKMT1) proteins were localized primarily to the uterine luminal epithelium and to the placental chorionic epithelium of placentomes throughout gestation. Collectively, these results demonstrate cell-specific and temporal regulation of components of the creatine-creatine kinase-phosphocreatine system that likely influence energy homeostasis for fetal-placental development.


Assuntos
Creatina , Placenta , Gravidez , Feminino , Animais , Ovinos , Placenta/metabolismo , Creatina/metabolismo , Guanidinoacetato N-Metiltransferase/metabolismo , Fosfocreatina/metabolismo , Creatina Quinase/metabolismo , Trifosfato de Adenosina/metabolismo , Arginina
9.
Biol Reprod ; 109(3): 309-318, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37418162

RESUMO

Progesterone (P4), estradiol (E2), and expression of their receptors (PGR and ESR1, respectively) by cells of the uterus regulate reproductive performance of mammals through effects on secretion and transport of nutrients into the uterine lumen. This study investigated the effect of changes in P4, E2, PGR, and ESR1 on expression of enzymes for the synthesis and secretion of polyamines. Suffolk ewes (n = 13) were synchronized to estrus (Day 0) and then, on either Day 1 (early metestrus), Day 9 (early diestrus), or Day 14 (late diestrus) of the estrous cycle, maternal blood samples were collected, and ewes were euthanized before obtaining uterine samples and uterine flushings. Endometrial expression of MAT2B and SMS mRNAs increased in late diestrus (P < 0.05). Expression of ODC1 and SMOX mRNAs decreased from early metestrus to early diestrus, and expression of ASL mRNA was lower in late diestrus than in early metestrus (P < 0.05). Immunoreactive PAOX, SAT1, and SMS proteins were localized to uterine luminal, superficial glandular, and glandular epithelia, stromal cells, myometrium, and blood vessels. Concentrations of spermidine and spermine in maternal plasma decreased from early metestrus to early diestrus and decreased further in late diestrus (P < 0.05). The abundances of spermidine and spermine in uterine flushings were less in late diestrus than early metestrus (P < 0.05). These results indicate that synthesis and secretion of polyamines are affected by P4 and E2, as well as the expression of PGR and ESR1 in the endometria of cyclic ewes.


Assuntos
Estradiol , Progesterona , Feminino , Animais , Ovinos , Estradiol/metabolismo , Poliaminas/metabolismo , Espermidina/metabolismo , Espermina/metabolismo , Rubor/metabolismo , Útero/metabolismo , Receptores de Progesterona/metabolismo , Mamíferos/metabolismo
10.
Reproduction ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38112573

RESUMO

What we understand about early stages of placentation in cattle is based on an elegant series of electron microscopic images that provide exquisite detail, but limited appreciation for the microanatomy across the utero-placental interface. In order to achieve a global perspective on the histology of bovine placentation during critical early stages of gestation, i.e., days 21, 31, 40, and 67, we performed immunohistochemistry to detect cell-specific expression of pregnancy-associated glycoprotein (PAG), cytokeratin, epithelial (E)-cadherin, and serine hydroxymethyltransferase 2 (SHMT2) at the intact utero-placental interface. Key findings from the immunohistochemical analyses are that there are: (1) PAG-positive cells with a single nucleus within the uterine luminal epithelial (LE) cells; (2) PAG-positive cells with two nuclei in the LE; (3) PAG-positive syncytial cells with more than three nuclei in the LE; (4) LE cells that are dissociated from one another and dissociated from the basement membrane in regions of syncytialization within the LE layer; (5) replacement of the mononuclear LE with a multi-layer thick population of PAG-positive cells invading into the uterine stroma of caruncles, but not into the stroma of intercaruncular endometrium; and (6) PAG-, E-cadherin- and SHMT2-positive mononuclear cells at the leading edge of developing cotyledonary villi that eventually represent the majority of the epithelial surface separating caruncular stroma from cotyledonary stroma. Finally, the utero-placental interface of ruminants is not always uniform across a single cross-section of a site of placentation which allows different conclusions to be made depending on the part of the utero-placental interface being examined.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA