RESUMO
OBJECTIVE: To determine the usefulness of brain-derived neurotrophic factor (BDNF) as a diagnostic biomarker for colorectal cancer (CRC). MATERIALS AND METHODS: ELISA immunoassay was used to examine BDNF concentrations in the sera of two different retrospective cohorts consisting of CRC patients and age/gender matched controls. Cohort 1 consisted of 99 controls and 97 CRC patients, whereas cohort 2 consisted of 47 controls and 91 CRC patients. RESULTS: In cohort 1, the median concentration of BDNF was significantly (p< 0.0001) lower in CRC patient samples (18.8 ng/mL, range 4.0-56.5 ng/mL) than control samples (23.4 ng/mL, range 3.0-43.1 ng/mL). This finding was validated in an independent patient cohort (CRC patients: 23.0 ng/mL, range 6.0-45.9 ng/mL; control patients: 32.3 ng/mL, range 14.2-62.4 ng/mL). BDNF concentrations did not differ significantly between Dukes' staging in the patient cohort, however patients with Stages A, B, C and D (p< 0.01 for each stage) tumours had significantly reduced BDNF levels compared to healthy controls. Receiver operating characteristic analysis was performed to determine the ability of BDNF to discriminate between healthy controls and those with CRC. At 95% specificity, BDNF concentrations distinguished CRC patients with 25% and 18% sensitivity, respectively, in cohorts 1 and 2 (cohort 1: AUC=0.79, 95% CI 0.70-0.87; cohort 2: AUC =0.69, 95% CI 0.61-0.76). CONCLUSION: The serum levels of BDNF were significantly lower in colorectal cancer patients when compared to a control population, and this did not differ between different Dukes' stages.
Assuntos
Biomarcadores Tumorais/sangue , Fator Neurotrófico Derivado do Encéfalo/sangue , Neoplasias Colorretais/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígeno Carcinoembrionário/sangue , Estudos de Casos e Controles , Neoplasias Colorretais/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Curva ROC , Estudos Retrospectivos , Sensibilidade e EspecificidadeRESUMO
Two-dimensional gel electrophoresis and peptide mass fingerprinting were used to identify proteins in cerebrospinal fluid (CSF) pooled from three patients with multiple sclerosis (MS) and in CSF pooled from three patients with non-MS inflammatory central nervous system (CNS) disorders. Resolution of CSF proteins on three pH gradients (3-10, 4-7 and 6-11) enabled identification of a total of 430 spots in the MS CSF proteome that represented 61 distinct proteins. The gels containing MS CSF revealed 103 protein spots that were not seen on control gels. All but four of these 103 spots were proteins known to be present in normal human CSF. The four exceptions were: CRTAC-IB (cartilage acidic protein), tetranectin (a plasminogen-binding protein), SPARC-like protein (a calcium binding cell signalling glycoprotein), and autotaxin t (a phosphodiesterase). It remains unknown whether these four proteins are related to the cause and pathogenesis of MS.