Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Glycobiology ; 33(4): 289-300, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-36239409

RESUMO

The structure of the O-antigen from the international reference strain Escherichia coli O93:-:H16 has been determined. A nonrandom modal chain-length distribution was observed for the lipopolysaccharide, a pattern which is typical when long O-specific polysaccharides are expressed. By a combination of (i) bioinformatics information on the gene cluster related to O-antigen synthesis including putative function on glycosyl transferases, (ii) the magnitude of NMR coupling constants of anomeric protons, and (iii) unassigned 2D 1H, 13C-HSQC, and 1H,1H-TOCSY NMR spectra it was possible to efficiently elucidate the structure of the carbohydrate polymer in an automated fashion using the computer program CASPER. The polysaccharide also carries O-acetyl groups and their locations were determined by 2D NMR experiments showing that ~½ of the population was 2,6-di-O-acetylated, ~» was 2-O-acetylated, whereas ~» did not carry O-acetyl group(s) in the 3-O-substituted mannosyl residue of the repeating unit. The structure of the tetrasaccharide repeating unit of the O-antigen is given by: →2)-ß-d-Manp-(1→3)-ß-d-Manp2Ac6Ac-(1→4)-ß-d-GlcpA-(1→3)-α-d-GlcpNAc-(1→, which should also be the biological repeating unit and it shares structural elements with capsular polysaccharides from E. coli K84 and K50. The structure of the acidic O-specific polysaccharide from Cellulophaga baltica strain NN015840T differs to that of the O-antigen from E. coli O93 by lacking the O-acetyl group at O6 of the O-acetylated mannosyl residue.


Assuntos
Escherichia coli , Antígenos O , Antígenos O/genética , Antígenos O/química , Escherichia coli/genética , Escherichia coli/química , Lipopolissacarídeos , Família Multigênica , Espectroscopia de Ressonância Magnética
2.
Glycobiology ; 32(12): 1089-1100, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36087289

RESUMO

Enteropathogenic Escherichia coli O125, the cause of infectious diarrheal disease, is comprised of two serogroups, viz., O125ab and O125ac, which display the aggregative adherence pattern with epithelial cells. Herein, the structure of the O-antigen polysaccharide from E. coli O125ac:H6 has been elucidated. Sugar analysis revealed the presence of fucose, mannose, galactose and N-acetyl-galactosamine as major components. Unassigned 1H and 13C NMR data from one- and two-dimensional NMR experiments of the O125ac O-antigen in conjunction with sugar components were used as input to the CASPER program, which can determine polysaccharide structure in a fully automated way, and resulted in the following branched pentasaccharide structure of the repeating unit: →4)[ß-d-Galp-(1 â†’ 3)]-ß-d-GalpNAc-(1 â†’ 2)-α-d-Manp-(1 â†’ 3)-α-l-Fucp-(1 â†’ 3)-α-d-GalpNAc-(1→, where the side chain is denoted by square brackets. The proposed O-antigen structure was confirmed by 1H and 13C NMR chemical shift assignments and determination of interresidue connectivities. Based on this structure, that of the O125ab O-antigen, which consists of hexasaccharide repeating units with an additional glucosyl group, was possible to establish in a semi-automated fashion by CASPER. The putative existence of gnu and gne in the gene clusters of the O125 serogroups is manifested by N-acetyl-d-galactosamine residues as the initial sugar residue of the biological repeating unit as well as within the repeating unit. The close similarity between O-antigen structures is consistent with the presence of two subgroups in the E. coli O125 serogroup.


Assuntos
Escherichia coli , Antígenos O , Antígenos O/química , Escherichia coli/genética , Escherichia coli/química , Espectroscopia de Ressonância Magnética , Carboidratos , Açúcares
3.
J Bacteriol ; 202(24)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32989087

RESUMO

Shigella flexneri is a major causative agent of bacillary dysentery in developing countries, where serotype 2a2 is the prevalent strain. To date, approximately 30 serotypes have been identified for S. flexneri, and the major contribution to the emergence of new serotypes is chemical modifications of the lipopolysaccharide (LPS) component O antigen (Oag). Glucosylation, O-acetylation, and phosphoethanolamine (PEtN) modifications increase the Oag diversity, providing benefits to S. flexneri LPS Oag acts as a primary receptor for bacteriophage Sf6, which infects only a limited range of S. flexneri serotypes (Y and X). It uses its tailspike protein (Sf6TSP) to establish initial interaction with LPS Oags that it then hydrolyzes. Currently, there is a lack of comprehensive study on the parent and serotype variant strains from the same genetic background and an understanding of the importance of LPS Oag O-acetylations. Therefore, a set of isogenic strains (based on S. flexneri 2457T [2a2]) with deletions of different Oag modification genes (oacB, oacD, and gtrII) that resemble different naturally occurring serotype Y and 2a strains was created. The impacts of these Oag modifications on S. flexneri sensitivity to Sf6 and the pathogenesis-related properties were then compared. We found that Sf6TSP can hydrolyze serotype 2a LPS Oag, identified that 3/4-O-acetylation is essential for resistance of serotype 2a strains to Sf6, and showed that serotype 2a strains have better invasion ability. Lastly, we revealed two new serotype conversions for S. flexneri, thereby contributing to understanding the evolution of this important human pathogen.IMPORTANCE The emergence of antibiotic-resistant strains and lack of efficient vaccines have made Shigella a priority organism for the World Health Organization (1). Therefore, bacteriophage therapy has received increasing attention as an alternative therapeutic approach. LPS Oag is the most variable part of LPS due to chemical modifications and is the target of bacteriophage Sf6 (S. flexneri specific). We dissected the evolution of S. flexneri serotype Y to 2a2, which revealed a new role for a gene acquired during serotype conversion and furthermore identified new specific forms of LPS receptor for Sf6. Collectively, these results unfold the importance of the acquisition of those Oag modification genes and further our understanding of the relationship between Sf6 and S. flexneri.


Assuntos
Bacteriófagos/metabolismo , Disenteria Bacilar/microbiologia , Antígenos O/metabolismo , Receptores Virais/metabolismo , Shigella flexneri/metabolismo , Shigella flexneri/virologia , Acetilação , Bacteriófagos/genética , Células HeLa , Humanos , Antígenos O/genética , Receptores Virais/genética , Sorogrupo , Shigella flexneri/classificação , Shigella flexneri/genética , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
4.
Beilstein J Org Chem ; 15: 1046-1060, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31164942

RESUMO

Galectins are carbohydrate recognition proteins that bind carbohydrates containing galactose and are involved in cell signaling and cellular interactions, involving them in several diseases. We present the synthesis of (aryltriazolyl)methyl galactopyranoside galectin inhibitors using a highly diastereoselective hydroboration of C1-exo-methylene pyranosides giving inhibitors with fourfold or better selectivity for galectin-1 over galectin-3, -4C (C-terminal CRD), -4N (N-terminal CRD), -7, -8C, -8N, -9C, and -9N and dissociation constants down to 170 µM.

5.
Carbohydr Res ; 513: 108528, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35247641

RESUMO

Carbohydrate structure can be elucidated or confirmed by using NMR spectroscopy as the prime technique. Prediction of 1H and 13C NMR chemical shifts by computational approaches makes this assignment process more efficient and the program CASPER can perform this task rapidly. It does so by relying on chemical shift data of mono-, di-, and trisaccharides. In order to improve accuracy and quality of these predictions we have assigned 1H and 13C NMR chemical shifts of 30 monosaccharides, 17 disaccharides, 10 trisaccharides and one tetrasaccharide; in total 58 compounds. Due to different rotamers, ring forms, α- and ß-anomeric forms and pD conditions this resulted in 74 1H and 13C NMR chemical shift data sets, all of which were refined using total line-shape analysis for the 1H resonances in order to obtain accurate chemical shifts. Subsequent NMR chemical shift predictions for three sialic acid-containing oligosaccharides, viz., GD1a, a disialyl-LNnT hexasaccharide and a polysialic acid-lactose decasaccharide, and NMR-based structural elucidations of two O-antigen polysaccharides from E. coli O174 were performed by the CASPER program (http://www.casper.organ.su.se/casper/) resulting in very good to excellent agreement between experimental and predicted data thereby demonstrating its utility for carbohydrate compounds that have been chemically or enzymatically synthesized, structurally modified or isolated from nature.


Assuntos
Escherichia coli/química , Ressonância Magnética Nuclear Biomolecular , Polissacarídeos Bacterianos/química , Configuração de Carboidratos , Isótopos de Carbono , Modelos Moleculares , Prótons
6.
Carbohydr Res ; 498: 108051, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33075674

RESUMO

The structure of the O-antigen from Escherichia coli reference strain O188 (E. coli O188:H10) has been investigated. The lipopolysaccharide shows a typical nonrandom modal chain-length distribution and the sugar and absolute configuration analysis revealed d-Man, d-Glc, d-GlcN and d-GlcA as major components. The structure of the O-specific polysaccharide was determined using one- and two-dimensional 1H and 13C NMR spectroscopy experiments, where inter-residue correlations were identified by 1H,13C-heteronuclear multiple-bond correlation and 1H,1H-NOESY experiments, which revealed that it consists of pentasaccharide repeating units with the following structure: Biosynthetic aspects and NMR analysis are consistent with the presented structure as the biological repeating unit. The O-antigen of Shigella boydii type 16 differs only in that it carries O-acetyl groups to ~50% at O6 of the branch-point mannose residues. A molecular model of the E. coli O188 O-antigen containing 20 repeating units extends ~100 Å, which is similar to the height of the periplasmic portion of polysaccharide co-polymerase Wzz proteins that regulate the O-antigen chain length of lipopolysaccharides in the Wzx/Wzy biosynthetic pathway.


Assuntos
Escherichia coli/química , Antígenos O/química , Sequência de Carboidratos , Espectroscopia de Ressonância Magnética
7.
FEMS Microbiol Rev ; 44(6): 655-683, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-31778182

RESUMO

Escherichia coli includes clonal groups of both commensal and pathogenic strains, with some of the latter causing serious infectious diseases. O antigen variation is current standard in defining strains for taxonomy and epidemiology, providing the basis for many serotyping schemes for Gram-negative bacteria. This review covers the diversity in E. coli O antigen structures and gene clusters, and the genetic basis for the structural diversity. Of the 187 formally defined O antigens, six (O31, O47, O67, O72, O94 and O122) have since been removed and three (O34, O89 and O144) strains do not produce any O antigen. Therefore, structures are presented for 176 of the 181 E. coli O antigens, some of which include subgroups. Most (93%) of these O antigens are synthesized via the Wzx/Wzy pathway, 11 via the ABC transporter pathway, with O20, O57 and O60 still uncharacterized due to failure to find their O antigen gene clusters. Biosynthetic pathways are given for 38 of the 49 sugars found in E. coli O antigens, and several pairs or groups of the E. coli antigens that have related structures show close relationships of the O antigen gene clusters within clades, thereby highlighting the genetic basis of the evolution of diversity.


Assuntos
Proteínas de Escherichia coli/genética , Escherichia coli/química , Escherichia coli/genética , Antígenos O/química , Antígenos O/genética , Proteínas de Escherichia coli/química , Evolução Molecular , Variação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA