Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Genes Dev ; 30(9): 1101-15, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27125671

RESUMO

An open and decondensed chromatin organization is a defining property of pluripotency. Several epigenetic regulators have been implicated in maintaining an open chromatin organization, but how these processes are connected to the pluripotency network is unknown. Here, we identified a new role for the transcription factor NANOG as a key regulator connecting the pluripotency network with constitutive heterochromatin organization in mouse embryonic stem cells. Deletion of Nanog leads to chromatin compaction and the remodeling of heterochromatin domains. Forced expression of NANOG in epiblast stem cells is sufficient to decompact chromatin. NANOG associates with satellite repeats within heterochromatin domains, contributing to an architecture characterized by highly dispersed chromatin fibers, low levels of H3K9me3, and high major satellite transcription, and the strong transactivation domain of NANOG is required for this organization. The heterochromatin-associated protein SALL1 is a direct cofactor for NANOG, and loss of Sall1 recapitulates the Nanog-null phenotype, but the loss of Sall1 can be circumvented through direct recruitment of the NANOG transactivation domain to major satellites. These results establish a direct connection between the pluripotency network and chromatin organization and emphasize that maintaining an open heterochromatin architecture is a highly regulated process in embryonic stem cells.


Assuntos
Heterocromatina/genética , Heterocromatina/metabolismo , Células-Tronco Embrionárias Murinas/fisiologia , Proteína Homeobox Nanog/metabolismo , Animais , Linhagem Celular , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Regulação para Baixo , Deleção de Genes , Camundongos , Proteína Homeobox Nanog/genética , Domínios Proteicos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Mol Cell ; 57(5): 936-947, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25747659

RESUMO

Cells chemically isolate molecules in compartments to both facilitate and regulate their interactions. In addition to membrane-encapsulated compartments, cells can form proteinaceous and membraneless organelles, including nucleoli, Cajal and PML bodies, and stress granules. The principles that determine when and why these structures form have remained elusive. Here, we demonstrate that the disordered tails of Ddx4, a primary constituent of nuage or germ granules, form phase-separated organelles both in live cells and in vitro. These bodies are stabilized by patterned electrostatic interactions that are highly sensitive to temperature, ionic strength, arginine methylation, and splicing. Sequence determinants are used to identify proteins found in both membraneless organelles and cell adhesion. Moreover, the bodies provide an alternative solvent environment that can concentrate single-stranded DNA but largely exclude double-stranded DNA. We propose that phase separation of disordered proteins containing weakly interacting blocks is a general mechanism for forming regulated, membraneless organelles.


Assuntos
Grânulos Citoplasmáticos/química , RNA Helicases DEAD-box/química , Organelas/química , Transição de Fase , Sequência de Aminoácidos , Núcleo Celular/química , Núcleo Celular/metabolismo , Grânulos Citoplasmáticos/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , DNA/química , DNA/metabolismo , Células HeLa , Humanos , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Metilação , Microscopia Confocal , Microscopia de Fluorescência , Dados de Sequência Molecular , Mutação , Organelas/metabolismo , Concentração Osmolar , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Imagem com Lapso de Tempo , Temperatura de Transição
3.
Trends Biochem Sci ; 36(1): 1-6, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20926298

RESUMO

Eukaryotic genomes must be folded and compacted to fit within the restricted volume of the nucleus. According to the current paradigm, strings of nucleosomes, termed 10nm chromatin fibers, constitute the template of transcriptionally active genomic material. The majority of the genome is maintained in a silenced state through higher-order chromatin assemblies, based on the 30nm chromatin fiber, which excludes activating regulatory factors. New experimental approaches, however, including chromatin conformation capture and cryo-electron microscopy, call into question the in situ evidence for the 30nm chromatin fiber. We suggest that the organization of the genome based on 10nm chromatin fibers is sufficient to describe the complexities of nuclear organization and gene regulation.


Assuntos
Cromatina , Animais , Cromatina/química , Cromatina/ultraestrutura , DNA/química , DNA/ultraestrutura , Genoma , Humanos , Interfase , Transcrição Gênica
4.
EMBO J ; 30(9): 1778-89, 2011 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-21468033

RESUMO

Induced pluripotent stem (iPS) cell reprogramming is a gradual epigenetic process that reactivates the pluripotent transcriptional network by erasing and establishing repressive epigenetic marks. In contrast to loci-specific epigenetic changes, heterochromatin domains undergo epigenetic resetting during the reprogramming process, but the effect on the heterochromatin ultrastructure is not known. Here, we characterize the physical structure of heterochromatin domains in full and partial mouse iPS cells by correlative electron spectroscopic imaging. In somatic and partial iPS cells, constitutive heterochromatin marked by H3K9me3 is highly compartmentalized into chromocentre structures of densely packed chromatin fibres. In contrast, chromocentre boundaries are poorly defined in pluripotent embryonic stem and full iPS cells, and are characterized by unusually dispersed 10 nm heterochromatin fibres in high Nanog-expressing cells, including pluripotent cells of the mouse blastocyst before differentiation. This heterochromatin reorganization accompanies retroviral silencing during conversion of partial iPS cells by MEK/GSK3 2i inhibitor treatment. Thus, constitutive heterochromatin is compacted in partial iPS cells but reorganizes into dispersed 10 nm chromatin fibres as the fully reprogrammed iPS cell state is acquired.


Assuntos
Diferenciação Celular/fisiologia , Reprogramação Celular/fisiologia , Epigênese Genética/fisiologia , Heterocromatina/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Animais , Western Blotting , Linhagem Celular , Imunoprecipitação da Cromatina , Citometria de Fluxo , Inativação Gênica , Vetores Genéticos/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas de Homeodomínio/metabolismo , Processamento de Imagem Assistida por Computador , Camundongos , Análise em Microsséries , Microscopia Eletrônica de Transmissão , Microscopia Eletrônica de Transmissão por Filtração de Energia , Microscopia de Fluorescência , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteína Homeobox Nanog , Retroviridae , Proteínas dos Retroviridae/genética , Proteínas dos Retroviridae/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
5.
EMBO Rep ; 13(11): 992-6, 2012 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-22986547

RESUMO

The mammalian genome is compacted to fit within the confines of the cell nucleus. DNA is wrapped around nucleosomes, forming the classic "beads-on-a-string" 10-nm chromatin fibre. Ten-nanometre chromatin fibres are thought to condense into 30-nm fibres. This structural reorganization is widely assumed to correspond to transitions between active and repressed chromatin, thereby representing a chief regulatory event. Here, by combining electron spectroscopic imaging with tomography, three-dimensional images are generated, revealing that both open and closed chromatin domains in mouse somatic cells comprise 10-nm fibres. These findings indicate that the 30-nm chromatin model does not reflect the true regulatory structure in vivo.


Assuntos
Genoma , Nucleossomos/química , Animais , Células Cultivadas , DNA/química , Equinodermos , Tomografia com Microscopia Eletrônica , Histonas/química , Camundongos , Microscopia Eletrônica de Transmissão por Filtração de Energia , Modelos Moleculares , Conformação Molecular , Nucleossomos/ultraestrutura
6.
Genome Res ; 20(2): 155-69, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19952138

RESUMO

Differentiation of mouse embryonic stem cells (mESCs) is accompanied by changes in replication timing. To explore the relationship between replication timing and cell fate transitions, we constructed genome-wide replication-timing profiles of 22 independent mouse cell lines representing 10 stages of early mouse development, and transcription profiles for seven of these stages. Replication profiles were cell-type specific, with 45% of the genome exhibiting significant changes at some point during development that were generally coordinated with changes in transcription. Comparison of early and late epiblast cell culture models revealed a set of early-to-late replication switches completed at a stage equivalent to the post-implantation epiblast, prior to germ layer specification and down-regulation of key pluripotency transcription factors [POU5F1 (also known as OCT4)/NANOG/SOX2] and coinciding with the emergence of compact chromatin near the nuclear periphery. These changes were maintained in all subsequent lineages (lineage-independent) and involved a group of irreversibly down-regulated genes, at least some of which were repositioned closer to the nuclear periphery. Importantly, many genomic regions of partially reprogrammed induced pluripotent stem cells (piPSCs) failed to re-establish ESC-specific replication-timing and transcription programs. These regions were enriched for lineage-independent early-to-late changes, which in female cells included the inactive X chromosome. Together, these results constitute a comprehensive "fate map" of replication-timing changes during early mouse development. Moreover, they support a model in which a distinct set of replication domains undergoes a form of "autosomal Lyonization" in the epiblast that is difficult to reprogram and coincides with an epigenetic commitment to differentiation prior to germ layer specification.


Assuntos
Período de Replicação do DNA/genética , Desenvolvimento Embrionário/genética , Estudo de Associação Genômica Ampla , Animais , Diferenciação Celular/genética , Linhagem Celular , Cromatina/genética , Ilhas de CpG/genética , Regulação para Baixo/genética , Células-Tronco Embrionárias/citologia , Epigênese Genética/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/crescimento & desenvolvimento , Proteínas de Homeodomínio/genética , Camundongos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Células-Tronco Pluripotentes/citologia , Regiões Promotoras Genéticas/genética , Fatores de Transcrição SOXB1/genética , Transcrição Gênica/genética
7.
PLoS Genet ; 4(4): e1000051, 2008 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-18404216

RESUMO

The Locus Control Region (LCR) requires intronic elements within beta-globin transgenes to direct high level expression at all ectopic integration sites. However, these essential intronic elements cannot be transmitted through retrovirus vectors and their deletion may compromise the therapeutic potential for gene therapy. Here, we systematically regenerate functional beta-globin intron 2 elements that rescue LCR activity directed by 5'HS3. Evaluation in transgenic mice demonstrates that an Oct-1 binding site and an enhancer in the intron cooperate to increase expression levels from LCR globin transgenes. Replacement of the intronic AT-rich region with the Igmu 3'MAR rescues LCR activity in single copy transgenic mice. Importantly, a combination of the Oct-1 site, Igmu 3'MAR and intronic enhancer in the BGT158 cassette directs more consistent levels of expression in transgenic mice. By introducing intron-modified transgenes into the same genomic integration site in erythroid cells, we show that BGT158 has the greatest transcriptional induction. 3D DNA FISH establishes that induction stimulates this small 5'HS3 containing transgene and the endogenous locus to spatially reorganize towards more central locations in erythroid nuclei. Electron Spectroscopic Imaging (ESI) of chromatin fibers demonstrates that ultrastructural heterochromatin is primarily perinuclear and does not reorganize. Finally, we transmit intron-modified globin transgenes through insulated self-inactivating (SIN) lentivirus vectors into erythroid cells. We show efficient transfer and robust mRNA and protein expression by the BGT158 vector, and virus titer improvements mediated by the modified intron 2 in the presence of an LCR cassette composed of 5'HS2-4. Our results have important implications for the mechanism of LCR activity at ectopic integration sites. The modified transgenes are the first to transfer intronic elements that potentiate LCR activity and are designed to facilitate correction of hemoglobinopathies using single copy vectors.


Assuntos
Terapia Genética/métodos , Globinas/genética , Anemia Falciforme/genética , Anemia Falciforme/terapia , Animais , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular , Primers do DNA/genética , Elementos Facilitadores Genéticos , Feminino , Expressão Gênica , Teste de Complementação Genética , Vetores Genéticos , Íntrons , Região de Controle de Locus Gênico , Masculino , Camundongos , Camundongos Transgênicos , Fator 1 de Transcrição de Octâmero/metabolismo , Gravidez , Proteínas Recombinantes/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Methods Mol Biol ; 1042: 181-95, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23980008

RESUMO

The eukaryotic genome is packaged within the nucleus as poly-nucleosome 10 nm chromatin fibres. The nucleosome core particle, the fundamental chromatin subunit, consists of a DNA molecule wrapped around a histone octamer. Biochemical modifications of both the DNA and histone proteins have been characterized that influence chromatin structure and function. These modifications include DNA methylation, histone variants and posttranslational modifications of the core histone protein tails. An outstanding area for investigation in the field of nuclear cell biology is the characterization of the functional relation between these biochemical modifications and the underlying chromatin structure and nuclear sub-compartmentalization. Electron spectroscopic tomography is a high-resolution microscopy technique that facilitates visualization of individual 10 nm chromatin fibres in three dimensions. The method, therefore, has a role to play in exploring the relationships of the epigenome and nuclear organization. Correlating immunofluorescence microscopy with electron spectroscopic tomography provides a powerful approach to relate epigenetic marks with high resolution chromatin organization.


Assuntos
Cromatina/genética , Tomografia com Microscopia Eletrônica/métodos , Microscopia Eletrônica de Transmissão por Filtração de Energia/métodos , Baço/citologia , Animais , DNA/genética , Histonas/genética , Imuno-Histoquímica/métodos , Camundongos , Estrutura Terciária de Proteína
9.
Curr Biol ; 23(14): 1360-6, 2013 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-23810536

RESUMO

Centrosomes organize microtubule (MT) arrays and are comprised of centrioles surrounded by ordered pericentriolar proteins. Centrioles are barrel-shaped structures composed of MTs, and as basal bodies they template the formation of cilia/flagella. Defects in centriole assembly can lead to ciliopathies and genome instability. The assembly of procentrioles requires a set of conserved proteins. It is initiated at the G1-to-S transition by PLK4 and CEP152, which help recruit SASS6 and STIL to the vicinity of the mother centriole to organize the cartwheel. Subsequently, CPAP promotes centriolar MT assembly and elongation in G2. While centriole integrity is maintained by CEP135 and POC1 through MT stabilization, centriole elongation requires POC5 and is restricted by CP110 and CEP97. How strict control of centriole length is achieved remains unclear. Here, we show that CEP120 and SPICE1 are required to localize CEP135 (but not SASS6, STIL, or CPAP) to procentrioles. CEP120 associates with SPICE1 and CPAP, and depletion of any of these proteins results in short procentrioles. Furthermore, CEP120 or CPAP overexpression results in excessive centriole elongation, a process dependent on CEP120, SPICE1, and CPAP. Our findings identify a shared function for these proteins in centriole length control.


Assuntos
Proteínas de Ciclo Celular/genética , Centríolos/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Centríolos/ultraestrutura , Células HeLa , Humanos , Microscopia Imunoeletrônica , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/ultraestrutura
10.
PLoS One ; 5(5): e10531, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20479880

RESUMO

An open chromatin architecture devoid of compact chromatin is thought to be associated with pluripotency in embryonic stem cells. Establishing this distinct epigenetic state may also be required for somatic cell reprogramming. However, there has been little direct examination of global structural domains of chromatin during the founding and loss of pluripotency that occurs in preimplantation mouse development. Here, we used electron spectroscopic imaging to examine large-scale chromatin structural changes during the transition from one-cell to early postimplantation stage embryos. In one-cell embryos chromatin was extensively dispersed with no noticeable accumulation at the nuclear envelope. Major changes were observed from one-cell to two-cell stage embryos, where chromatin became confined to discrete blocks of compaction and with an increased concentration at the nuclear envelope. In eight-cell embryos and pluripotent epiblast cells, chromatin was primarily distributed as an extended meshwork of uncompacted fibres and was indistinguishable from chromatin organization in embryonic stem cells. In contrast, lineage-committed trophectoderm and primitive endoderm cells, and the stem cell lines derived from these tissues, displayed higher levels of chromatin compaction, suggesting an association between developmental potential and chromatin organisation. We examined this association in vivo and found that deletion of Oct4, a factor required for pluripotency, caused the formation of large blocks of compact chromatin in putative epiblast cells. Together, these studies show that an open chromatin architecture is established in the embryonic lineages during development and is sufficient to distinguish pluripotent cells from tissue-restricted progenitor cells.


Assuntos
Linhagem da Célula , Cromatina/ultraestrutura , Embrião de Mamíferos/citologia , Células-Tronco Pluripotentes/citologia , Animais , Cromatina/metabolismo , Implantação do Embrião , Feminino , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Camadas Germinativas/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Membrana Nuclear/metabolismo , Membrana Nuclear/ultraestrutura , Células-Tronco Pluripotentes/metabolismo
11.
Chromosome Res ; 16(3): 397-412, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18461480

RESUMO

Electron microscopy has been the 'gold standard' of spatial resolution for studying the structure of the cell nucleus. Electron spectroscopic imaging (ESI) offers advantages over conventional transmission electron microscopy by eliminating the need for heavy-atom contrast agents. ESI also provides mass-dependent and element-specific information at high resolution, permitting the distinguishing of structures that are primarily composed of protein, DNA, or RNA. The technique can be applied to understand the structural consequences of epigenetic modifications, such as modified histones, on chromatin fiber morphology. ESI can also be applied to elucidate the multifunctional behavior of subnuclear 'organelles' such as the nucleolus and promyelocytic leukemia nuclear bodies.


Assuntos
Estruturas do Núcleo Celular/ultraestrutura , Cromatina/ultraestrutura , Microscopia Eletrônica de Transmissão/métodos , Animais , Nucléolo Celular/química , Nucléolo Celular/ultraestrutura , Estruturas do Núcleo Celular/química , Cromatina/química , DNA/química , Humanos , Camundongos , Nitrogênio/química , Proteínas Nucleares/química , Fósforo/química , RNA/química , Análise Espectral/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA