Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Parasitol Res ; 123(2): 116, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289423

RESUMO

Acanthamoeba castellanii, a ubiquitous protozoan, is responsible for significant diseases such as Acanthamoeba keratitis and granulomatous amoebic encephalitis. A crucial survival strategy of A. castellanii involves the formation of highly resistant cysts during adverse conditions. This study delves into the cellular processes underpinning encystment, focusing on gene expression changes related to reactive oxygen species (ROS) balance, with a particular emphasis on mitochondrial processes. Our findings reveal a dynamic response within the mitochondria during encystment, with the downregulation of key enzymes involved in oxidative phosphorylation (COX, AOX, and NADHalt) during the initial 48 h, followed by their overexpression at 72 h. This orchestrated response likely creates a pro-oxidative environment, facilitating encystment. Analysis of other ROS processing enzymes across the cell reveals differential expression patterns. Notably, antioxidant enzymes, such as catalases, glutaredoxins, glutathione S-transferases, peroxiredoxins, and thioredoxins, mirror the mitochondrial trend of downregulation followed by upregulation. Additionally, glycolysis and gluconeogenesis are downregulated during the early stages in order to potentially balance the metabolic requirement of the cyst. Our study underscores the importance of ROS regulation in Acanthamoeba encystment. Understanding these mechanisms offers insights into infection control and identifies potential therapeutic targets. This work contributes to unraveling the complex biology of A. castellanii and may aid in combatting Acanthamoeba-related infections. Further research into ROS and oxidase enzymes is warranted, given the organism's remarkable respiratory versatility.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Amebíase , Cistos , Humanos , Acanthamoeba castellanii/genética , Espécies Reativas de Oxigênio , Catalase
2.
Parasitol Res ; 121(9): 2615-2622, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35776211

RESUMO

Intron retention (IR) refers to the mechanism of alternative splicing in which an intron is not excised from the mature transcript. IR in the cosmopolitan free-living amoeba Acanthamoeba castellanii has not been studied. We performed an analysis of RNA sequencing data during encystment to identify genes that presented differentially retained introns during this process. We show that IR increases during cyst formation, indicating a potential mechanism of gene regulation that could help downregulate metabolism. We identify 69 introns from 67 genes that are differentially retained comparing the trophozoite stage and encystment after 24 and 48 h. These genes include several hypothetical proteins. We show different patterns of IR during encystment taking as examples a lipase, a peroxin-3 protein, an Fbox domain containing protein, a proteasome subunit, a polynucleotide adenylyltransferase, and a tetratricopeptide domain containing protein. A better understanding of IR in Acanthamoeba, and even other protists, could help elucidate changes in life cycle and combat disease such as Acanthamoeba keratitis in which the cyst is key for its persistence.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Acanthamoeba castellanii/genética , Animais , Humanos , Íntrons , Estágios do Ciclo de Vida , Trofozoítos
3.
Microb Cell ; 11: 69-78, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414808

RESUMO

Saccharomyces cerevisiae (baker's yeast) has yielded relevant insights into some of the basic mechanisms of organismal aging. Among these are genomic instability, oxidative stress, caloric restriction and mitochondrial dysfunction. Several genes are known to have an impact on the aging process, with corresponding mutants exhibiting short- or long-lived phenotypes. Research dedicated to unraveling the underlying cellular mechanisms can support the identification of conserved mechanisms of aging in other species. One of the hitherto less studied fields in yeast aging is how the organism regulates its gene expression at the transcriptional level. To our knowledge, we present the first investigation into alternative splicing, particularly intron retention, during replicative aging of S. cerevisiae. This was achieved by utilizing the IRFinder algorithm on a previously published RNA-seq data set by Janssens et al. (2015). In the present work, 44 differentially retained introns in 43 genes were identified during replicative aging. We found that genes with altered intron retention do not display significant changes in overall transcript levels. It was possible to functionally assign distinct groups of these genes to the cellular processes of mRNA processing and export (e.g., YRA1) in early and middle-aged yeast, and protein ubiquitination (e.g., UBC5) in older cells. In summary, our work uncovers a previously unexplored layer of the transcriptional program of yeast aging and, more generally, expands the knowledge on the occurrence of alternative splicing in baker's yeast.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA