Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Chem Phys ; 152(10): 104711, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32171201

RESUMO

In second harmonic generation (SHG), the energy of two incoming photons, e.g., from a femtosecond laser, can be combined in one outgoing photon of twice the energy, e.g., by means of a nonlinear crystal. The SHG efficiency, however, is limited. In this work, the harvested signal is maximized by composing a hybrid system consisting of a nonlinear crystal with a dense coverage of plasmonic nanostructures separated by narrow gaps. The method of self-assembled diblock-copolymer-based micellar lithography with subsequent electroless deposition is employed to cover the whole surface of a lithium niobate (LiNbO3) crystal. The interaction of plasmonic nanostructures with light leads to a strong electric near-field in the adjacent crystal. This near-field is harnessed to enhance the near-surface SHG signal from the nonlinear crystal. At the plasmon resonance of the gold nanoparticles, a pronounced enhancement of about 60-fold SHG is observed compared to the bare crystal within the confocal volume of a laser spot.

2.
Nanoscale ; 12(45): 23105-23115, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33180087

RESUMO

This work fundamentally investigates how the second harmonic generation (SHG) from commercial nonlinear crystals can be boosted by the addition of individual optical nanoantennas. Frequency conversion plays an important role in modern non-linear optics, and nonlinear crystals have become a widely used building block for non-linear processes. Still, SHG remains hampered by limited conversion efficiency. To strengthen SHG from the crystal surface, we investigate the interaction of LiNbO3 crystals with individual gold nanodiscs. The scattered intensities and resonance frequencies of the nanodiscs are analyzed by dark-field spectroscopy and simulations. Subsequently, the discs on LiNbO3 are excited by a pulsed femtosecond laser in a parabolic mirror setup. Comparing the SHG at the position of a single nanodisc at resonance on the crystal with that of the unstructured crystal and of gold nanodiscs on a reference substrate, local SHG enhancement of up to a factor of three was achieved in the focal volume through the presence of the antenna.

3.
Beilstein J Nanotechnol ; 9: 1977-1985, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30116689

RESUMO

The fabrication and optical characterization of self-assembled arrangements of rough gold nanoparticles with a high area coverage and narrow gaps for surface-enhanced Raman spectroscopy (SERS) are reported. A combination of micellar nanolithography and electroless deposition (ED) enables the tuning of the spacing and size of the noble metal nanoparticles. Long-range ordered quasi-hexagonal arrays of gold nanoparticles on silicon substrates with a variation of the particle sizes from about 20 nm to 120 nm are demonstrated. By increasing the particle sizes for the homogeneously spaced particles, a large number of narrow gaps is created, which together with the rough surface of the particles induces a high density of intense hotspots. This makes the surfaces interesting for future applications in near-field-enhanced bio-analytics of molecules. SERS was demonstrated by measuring Raman spectra of 4-MBA on the gold nanoparticles. It was verified that a smaller inter-particle distance leads to an increased SERS signal.

4.
Nanoscale ; 10(17): 8240-8245, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29682663

RESUMO

We systematically investigate the metallic photoluminescence (MPL) emitted from plasmonic nanoparticles (NPs) upon excitation with ultrafast laser pulses using a scanning confocal optical microscope (SCOM). By comparing the emission spectra of Au NPs of varying dimensions with the corresponding dark-field scattering spectra, indications are found that MPL encompasses two emission channels: the particle plasmons (PPs) and the electron-hole (e-h) pair recombination. The plasmons can be interpreted to play a twofold role: in the excitation process they provide the local field enhancement, and in the emission process they offer extra radiation channels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA