Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Nature ; 628(8007): 416-423, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538786

RESUMO

Antibody and chimeric antigen receptor (CAR) T cell-mediated targeted therapies have improved survival in patients with solid and haematologic malignancies1-9. Adults with T cell leukaemias and lymphomas, collectively called T cell cancers, have short survival10,11 and lack such targeted therapies. Thus, T cell cancers particularly warrant the development of CAR T cells and antibodies to improve patient outcomes. Preclinical studies showed that targeting T cell receptor ß-chain constant region 1 (TRBC1) can kill cancerous T cells while preserving sufficient healthy T cells to maintain immunity12, making TRBC1 an attractive target to treat T cell cancers. However, the first-in-human clinical trial of anti-TRBC1 CAR T cells reported a low response rate and unexplained loss of anti-TRBC1 CAR T cells13,14. Here we demonstrate that CAR T cells are lost due to killing by the patient's normal T cells, reducing their efficacy. To circumvent this issue, we developed an antibody-drug conjugate that could kill TRBC1+ cancer cells in vitro and cure human T cell cancers in mouse models. The anti-TRBC1 antibody-drug conjugate may provide an optimal format for TRBC1 targeting and produce superior responses in patients with T cell cancers.


Assuntos
Imunoconjugados , Leucemia de Células T , Linfoma de Células T , Receptores de Antígenos de Linfócitos T alfa-beta , Linfócitos T , Animais , Feminino , Humanos , Camundongos , Imunoconjugados/imunologia , Imunoconjugados/uso terapêutico , Imunoterapia Adotiva , Leucemia de Células T/tratamento farmacológico , Leucemia de Células T/imunologia , Linfoma de Células T/tratamento farmacológico , Linfoma de Células T/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Nat Commun ; 15(1): 1384, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360902

RESUMO

Cancers of the same tissue-type but in anatomically distinct locations exhibit different molecular dependencies for tumorigenesis. Proximal and distal colon cancers exemplify such characteristics, with BRAFV600E predominantly occurring in proximal colon cancers along with increased DNA methylation phenotype. Using mouse colon organoids, here we show that proximal and distal colon stem cells have distinct transcriptional programs that regulate stemness and differentiation. We identify that the homeobox transcription factor, CDX2, which is silenced by DNA methylation in proximal colon cancers, is a key mediator of the differential transcriptional programs. Cdx2-mediated proximal colon-specific transcriptional program concurrently is tumor suppressive, and Cdx2 loss sufficiently creates permissive state for BRAFV600E-driven transformation. Human proximal colon cancers with CDX2 downregulation showed similar transcriptional program as in mouse proximal organoids with Cdx2 loss. Developmental transcription factors, such as CDX2, are thus critical in maintaining tissue-location specific transcriptional programs that create tissue-type origin specific dependencies for tumor development.


Assuntos
Neoplasias do Colo , Proteínas Proto-Oncogênicas B-raf , Humanos , Camundongos , Animais , Proteínas Proto-Oncogênicas B-raf/genética , Fator de Transcrição CDX2/genética , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Proteínas de Ligação a DNA , Fatores de Transcrição/genética , Proteínas de Homeodomínio/genética
3.
bioRxiv ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38234817

RESUMO

Despite exciting developments in cancer immunotherapy, its broad application is limited by the paucity of targetable antigens on the tumor cell surface. As an intrinsic cellular pathway, nonsense-mediated decay (NMD) conceals neoantigens through the destruction of the RNA products from genes harboring truncating mutations. We developed and conducted a high throughput screen, based on the ratiometric analysis of transcripts, to identify critical mediators of NMD. This screen implicated disruption of kinase SMG1's phosphorylation of UPF1 as a potential disruptor of NMD. This led us to design a novel SMG1 inhibitor, KVS0001, that elevates the expression of transcripts and proteins resulting from truncating mutations in vivo and in vitro . Most importantly, KVS0001 concomitantly increased the presentation of immune-targetable HLA class I-associated peptides from NMD-downregulated proteins on the surface of cancer cells. KVS0001 provides new opportunities for studying NMD and the diseases in which NMD plays a role, including cancer and inherited diseases. One Sentence Summary: Disruption of the nonsense-mediated decay pathway with a newly developed SMG1 inhibitor with in-vivo activity increases the expression of T-cell targetable cancer neoantigens resulting from truncating mutations.

4.
bioRxiv ; 2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37873308

RESUMO

Trypanosoma brucei is a protozoan parasite that causes human and animal African trypanosomiases (HAT and AAT). Cardiac symptoms are commonly reported in HAT patients, and intracardiac parasites with accompanying myocarditis have been observed in both natural hosts and animal models of T. brucei infection. However, despite the importance of T. brucei as a cause of cardiac dysfunction and the dramatic socioeconomic impact of African trypanosomiases in sub-Saharan Africa, there are currently no reproducible murine models of T. brucei-associated cardiomyopathy. We present the first clinically relevant, reproducible murine model of cardiac dysfunction in chronic T. brucei infection. Similar to humans, mice showed histological evidence of myocarditis and elevation of serum NT-proBNP. Serum NT-proBNP levels were elevated prior to the development of severe ventricular dysfunction. On flow cytometry, myocarditis was associated with an increase of most myocardial immune cell populations, including multiple T cell and macrophage subsets, corroborating the notion that T. brucei-associated cardiac damage is an immune-mediated event. This novel mouse model represents a powerful and practical tool to investigate the pathogenesis of T. brucei-mediated heart damage and support the development of therapeutic options for T. brucei-associated cardiac disease.

5.
J Clin Invest ; 133(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36919699

RESUMO

High mobility group A1 (HMGA1) chromatin regulators are upregulated in diverse tumors where they portend adverse outcomes, although how they function in cancer remains unclear. Pancreatic ductal adenocarcinomas (PDACs) are highly lethal tumors characterized by dense desmoplastic stroma composed predominantly of cancer-associated fibroblasts and fibrotic tissue. Here, we uncover an epigenetic program whereby HMGA1 upregulates FGF19 during tumor progression and stroma formation. HMGA1 deficiency disrupts oncogenic properties in vitro while impairing tumor inception and progression in KPC mice and subcutaneous or orthotopic models of PDAC. RNA sequencing revealed HMGA1 transcriptional networks governing proliferation and tumor-stroma interactions, including the FGF19 gene. HMGA1 directly induces FGF19 expression and increases its protein secretion by recruiting active histone marks (H3K4me3, H3K27Ac). Surprisingly, disrupting FGF19 via gene silencing or the FGFR4 inhibitor BLU9931 recapitulates most phenotypes observed with HMGA1 deficiency, decreasing tumor growth and formation of a desmoplastic stroma in mouse models of PDAC. In human PDAC, overexpression of HMGA1 and FGF19 defines a subset of tumors with extremely poor outcomes. Our results reveal what we believe is a new paradigm whereby HMGA1 and FGF19 drive tumor progression and stroma formation, thus illuminating FGF19 as a rational therapeutic target for a molecularly defined PDAC subtype.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Carcinogênese/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Inativação Gênica , Proteína HMGA1a/genética , Proteína HMGA1a/metabolismo , Neoplasias Pancreáticas/patologia
6.
Toxicol Pathol ; 39(1): 267-72, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21147931

RESUMO

The continuing education course "Non-Invasive Imaging as a Problem-Solving Tool and Translational Biomarker Strategy in Toxicologic Pathology" provided a thorough overview of commonly used imaging modalities and the logistics required for integration of small animal imaging into toxicologic pathology. Non-invasive imaging (NIN) is gaining acceptance as an important modality in toxicologic pathology. This technology allows nonterminal, time-course evaluation of functional and morphologic endpoints and can be used to translate biomarkers between preclinical animal models and human patients. NIN can support drug development as well as basic research in academic or industrial environments. An initial overview of theoretical principles was followed by focused presentations on magnetic resonance imaging (MRI)/magnetic resonance microscopy (MRM), positron emission tomography (PET)/single proton emission computed tomography (SPECT), ultrasonography (US, primarily focused on echocardiography), optical (bioluminescent) imaging, and computed tomography (CT). The choice of imaging modality will depend on the research question and the needed resolution.


Assuntos
Biomarcadores , Educação Continuada , Patologia/educação , Toxicologia/educação , Animais , Ecocardiografia , Humanos , Imageamento por Ressonância Magnética , Modelos Animais , Doenças do Sistema Nervoso/diagnóstico , Doenças do Sistema Nervoso/patologia , Síndromes Neurotóxicas/diagnóstico , Síndromes Neurotóxicas/patologia , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada de Emissão de Fóton Único , Tomografia Computadorizada por Raios X
7.
Circulation ; 117(14): 1810-9, 2008 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-18362233

RESUMO

BACKGROUND: The B vitamin folic acid (FA) is important to mitochondrial protein and nucleic acid synthesis, is an antioxidant, and enhances nitric oxide synthase activity. Here, we tested whether FA reduces myocardial ischemic dysfunction and postreperfusion injury. METHODS AND RESULTS: Wistar rats were pretreated with either FA (10 mg/d) or placebo for 1 week and then underwent in vivo transient left coronary artery occlusion for 30 minutes with or without 90 minutes of reperfusion (total n=131; subgroups used for various analyses). FA (4.5x10(-6) mol/L i.c.) pretreatment and global ischemia/reperfusion (30 minutes/30 minutes) also were performed in vitro (n=28). After 30 minutes of ischemia, global function declined more in controls than in FA-pretreated rats (Delta dP/dtmax, -878+/-586 versus -1956+/-351 mm Hg/s placebo; P=0.03), and regional thickening was better preserved (37.3+/-5.3% versus 5.1+/-0.6% placebo; P=0.004). Anterior wall perfusion fell similarly (-78.4+/-9.3% versus -71.2+/-13.8% placebo at 30 minutes), yet myocardial high-energy phosphates ATP and ADP reduced by ischemia in controls were better preserved by FA pretreatment (ATP: control, 2740+/-58 nmol/g; ischemia, 947+/-55 nmol/g; ischemia plus FA, 1332+/-101 nmol/g; P=0.02). Basal oxypurines (xanthine, hypoxanthine, and urate) rose with FA pretreatment but increased less during ischemia than in controls. Ischemic superoxide generation declined (3124+/-280 cpm/mg FA versus 5898+/-474 cpm/mg placebo; P=0.001). After reperfusion, FA-treated hearts had smaller infarcts (3.8+/-1.2% versus 60.3+/-4.1% placebo area at risk; P<0.002) and less contraction band necrosis, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling positivity, superoxide, and nitric oxide synthase uncoupling. Infarct size declined similarly with 1 mg/d FA. CONCLUSIONS: FA pretreatment blunts myocardial dysfunction during ischemia and ameliorates postreperfusion injury. This is coupled to preservation of high-energy phosphates, reducing subsequent reactive oxygen species generation, eNOS-uncoupling, and postreperfusion cell death.


Assuntos
Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Cardiotônicos/uso terapêutico , Oclusão Coronária/tratamento farmacológico , Ácido Fólico/uso terapêutico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Pró-Fármacos/uso terapêutico , Animais , Cardiotônicos/farmacologia , Oclusão Coronária/metabolismo , Avaliação Pré-Clínica de Medicamentos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Ácido Fólico/administração & dosagem , Ácido Fólico/farmacologia , Hiper-Homocisteinemia/tratamento farmacológico , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III , Estresse Oxidativo/efeitos dos fármacos , Pré-Medicação , Pró-Fármacos/administração & dosagem , Pró-Fármacos/farmacologia , Purinas/biossíntese , Ratos , Ratos Wistar , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA