Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Cancer ; 16: 3, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26728044

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the most common malignant tumor of the liver. Non-alcoholic fatty liver disease (NAFLD) is a frequent chronic liver disorder in developed countries. NAFLD can progress through the more severe non alcoholic steatohepatitis (NASH), cirrhosis and, lastly, HCC. Genetic and epigenetic alterations of coding genes as well as deregulation of microRNAs (miRNAs) activity play a role in HCC development. In this study, the C57BL/6J mouse model was long term high-fat (HF) or low-fat (LF) diet fed, in order to analyze molecular mechanisms responsible for the hepatic damage progression. METHODS: Mice were HF or LF diet fed for different time points, then plasma and hepatic tissues were collected. Histological and clinical chemistry assays were performed to assess the progression of liver disease. MicroRNAs' differential expression was evaluated on pooled RNAs from tissues, and some miRNAs showing dysregulation were further analyzed at the individual level. RESULTS: Cholesterol, low and high density lipoproteins, triglycerides and alanine aminotransferase increase was detected in HF mice. Gross anatomical examination revealed hepatomegaly in HF livers, and histological analysis highlighted different degrees and levels of steatosis, inflammatory infiltrate and fibrosis in HF and LF animals, demonstrating the progression from NAFLD through NASH. Macroscopic nodules, showing typical neoplastic features, were observed in 20% of HF diet fed mice. Fifteen miRNAs differentially expressed in HF with respect to LF hepatic tissues during the progression of liver damage, and in tumors with respect to HF non tumor liver specimens were identified. Among them, miR-340-5p, miR-484, miR-574-3p, miR-720, whose expression was never described in NAFLD, NASH and HCC tissues, and miR-125a-5p and miR-182, which showed early and significant dysregulation in the sequential hepatic damage process. CONCLUSIONS: In this study, fifteen microRNAs which were modulated in hepatic tissues and in tumors during the transition NAFLD-NASH-HCC are reported. Besides some already described, new and early dysregulated miRNAs were identified. Functional analyses are needed to validate the results here obtained, and to better define the role of these molecules in the progression of the hepatic disease.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroRNAs/biossíntese , Hepatopatia Gordurosa não Alcoólica/genética , Animais , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Colesterol/sangue , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/patologia , Camundongos , MicroRNAs/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Triglicerídeos/sangue
2.
Int J Genomics ; 2014: 820248, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24616890

RESUMO

Cancer is a multistep process characterized by various and different genetic lesions which cause the transformation of normal cells into tumor cells. To preserve the genomic integrity, eukaryotic cells need a complex DNA damage/repair response network of signaling pathways, involving many proteins, able to induce cell cycle arrest, apoptosis, or DNA repair. Chemotherapy and/or radiation therapy are the most commonly used therapeutic approaches to manage cancer and act mainly through the induction of DNA damage. Impairment in the DNA repair proteins, which physiologically protect cells from persistent DNA injury, can affect the efficacy of cancer therapies. Recently, increasing evidence has suggested that microRNAs take actively part in the regulation of the DNA damage/repair network. MicroRNAs are endogenous short noncoding molecules able to regulate gene expression at the post-transcriptional level. Due to their activity, microRNAs play a role in many fundamental physiological and pathological processes. In this review we report and discuss the role of microRNAs in the DNA damage/repair and cancer.

3.
Int J Proteomics ; 2013: 125858, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23401773

RESUMO

Cancer affects millions of people worldwide. Tumor mortality is substantially due to diagnosis at stages that are too late for therapies to be effective. Advances in screening methods have improved the early diagnosis, prognosis, and survival for some cancers. Several validated biomarkers are currently used to diagnose and monitor the progression of cancer, but none of them shows adequate specificity, sensitivity, and predictive value for population screening. So, there is an urgent need to isolate novel sensitive, specific biomarkers to detect the disease early and improve prognosis, especially in high-mortality tumors. Proteomic techniques are powerful tools to help in diagnosis and monitoring of treatment and progression of the disease. During the last decade, mass spectrometry has assumed a key role in most of the proteomic analyses that are focused on identifying cancer biomarkers in human serum, making it possible to identify and characterize at the molecular level many proteins or peptides differentially expressed. In this paper we summarize the results of mass spectrometry serum profiling and biomarker identification in high mortality tumors, such as ovarian, liver, lung, and pancreatic cancer.

4.
Biomed Res Int ; 2013: 187204, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23533994

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common and aggressive human cancers worldwide. HCC is an example of inflammation-related cancer and represents a paradigm of the relation occurring between tumor microenvironment and tumor development. Tumor-associated macrophages (TAMs) are a major component of leukocyte infiltrate of tumors and play a pivotal role in tumor progression of inflammation-related cancer, including HCC. Several studies indicate that, in the tumor microenvironment, TAMs acquire an M2-polarized phenotype and promote angiogenesis, metastasis, and suppression of adaptive immunity through the expression of cytokines, chemokines, growth factors, and matrix metalloproteases. Indeed, an established M2 macrophage population has been associated with poor prognosis in HCC. The molecular links that connect cancer cells and TAMs are not completely known, but recent studies have demonstrated that NF-κB, STAT-3, and HIF-1 signaling pathways play key roles in this crosstalk. In this paper, we discuss the current knowledge about the role of TAMs in HCC development, highlighting the role of TAM-derived cytokines, chemokines, and growth factors in the initiation and progression of liver cancer and outlining the signaling pathways involved in the interplay between cancer cells and TAMs.


Assuntos
Carcinoma Hepatocelular/patologia , Inflamação/metabolismo , Neoplasias Hepáticas/patologia , Microambiente Tumoral , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Citocinas/metabolismo , Progressão da Doença , Humanos , Inflamação/genética , Inflamação/patologia , Leucócitos/metabolismo , Leucócitos/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , NF-kappa B/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA