Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Nano Lett ; 24(17): 5351-5360, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634773

RESUMO

Ultrasensitive and reliable conductive hydrogels are significant in the construction of human-machine twinning systems. However, in extremely cold environments, freezing severely limits the application of hydrogel-based sensors. Herein, building on biomimetics, a zwitterionic hydrogel was elaborated for human-machine interaction employing multichemical bonding synergies and experimental signal analyses. The covalent bonds, hydrogen bonds, and electrostatic interactions construct a dense double network structure favorable for stress dispersion and hydrogen bond regeneration. In particular, zwitterions and ionic conductors maintained excellent strain response (99 ms) and electrical sensitivity (gauge factor = 14.52) in the dense hydrogel structure while immobilizing water molecules to enhance the weather resistance (-68 °C). Inspired by the high sensitivity, zwitterionic hydrogel-based strain sensors and remote-control gloves were designed by analyzing the experimental signals, demonstrating promising potential applications within specialized flexible materials and human-machine symbiotic systems.


Assuntos
Hidrogéis , Hidrogéis/química , Humanos , Dispositivos Eletrônicos Vestíveis , Congelamento , Ligação de Hidrogênio , Eletricidade Estática , Condutividade Elétrica
2.
Anal Chem ; 96(21): 8665-8673, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38722711

RESUMO

Prostate-specific antigen (PSA) is a key marker for a prostate cancer diagnosis. The low sensitivity of traditional lateral flow immunoassay (LFIA) methods makes them unsuitable for point-of-care testing. Herein, we designed a nanozyme by in situ growth of Prussian blue (PB) within the pores of dendritic mesoporous silica (DMSN). The PB was forcibly dispersed into the pores of DMSN, leading to an increase in exposed active sites. Consequently, the atom utilization is enhanced, resulting in superior peroxidase (POD)-like activity compared to that of cubic PB. Antibody-modified DMSN@PB nanozymes serve as immunological probes in an enzymatic-enhanced colorimetric and photothermal dual-signal LFIA for PSA detection. After systematic optimization, the LFIA based on DMSN@PB successfully achieves a 4-fold amplification of the colorimetric signal within 7 min through catalytic oxidation of the chromogenic substrate by POD-like activity. Moreover, DMSN@PB exhibits an excellent photothermal conversion ability under 808 nm laser irradiation. Accordingly, photothermal signals are introduced to improve the anti-interference ability and sensitivity of LFIA, exhibiting a wide linear range (1-40 ng mL-1) and a low PSA detection limit (0.202 ng mL-1), which satisfies the early detection level of prostate cancer. This research provides a more accurate and reliable visualization analysis methodology for the early diagnosis of prostate cancer.


Assuntos
Colorimetria , Ferrocianetos , Imunoensaio , Nanocompostos , Antígeno Prostático Específico , Humanos , Masculino , Ferrocianetos/química , Imunoensaio/métodos , Limite de Detecção , Nanocompostos/química , Porosidade , Antígeno Prostático Específico/análise , Neoplasias da Próstata/diagnóstico , Dióxido de Silício/química
3.
Small ; : e2401650, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38712474

RESUMO

Piezoelectric catalysis is a novel catalytic technology that has developed rapidly in recent years and has attracted extensive interest among researchers in the field of tumor therapy for its acoustic-sensitizing properties. Nevertheless, researchers are still controversial about the key technical difficulties in the modulation of piezoelectric sonosensitizers for tumor therapy applications, which is undoubtedly a major obstacle to the performance modulation of piezoelectric sonosensitizers. Clarification of this challenge will be beneficial to the design and optimization of piezoelectric sonosensitizers in the future. Here, the authors start from the mechanism of piezoelectric catalysis and elaborate the mechanism and methods of defect engineering and phase engineering for the performance modulation of piezoelectric sonosensitizers based on the energy band theory. The combined therapeutic strategy of piezoelectric sonosensitizers with enzyme catalysis and immunotherapy is introduced. Finally, the challenges and prospects of piezoelectric sonosensitizers are highlighted. Hopefully, the explorations can guide researchers toward the optimization of piezoelectric sonosensitizers and can be applied in their own research.

4.
J Am Chem Soc ; 145(17): 9488-9507, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36998235

RESUMO

Arming activatable mild-photothermal therapy (PTT) with the property of relieving tumor thermotolerance holds great promise for overcoming traditional mild PTT limitations such as thermoresistance, insufficient therapeutic effect, and off-target heating. Herein, a mitochondria-targeting, defect-engineered AFCT nanozyme with enhanced multi-enzymatic activity was elaborately designed as a tumor microenvironment (TME)-activatable phototheranostic agent to achieve remarkable anti-tumor therapy via "electron transport chain (ETC) interference and synergistic adjuvant therapy". Density functional theory calculations revealed that the synergistic effect among multi-enzyme active centers endows the AFCT nanozymes with excellent catalytic activity. In TME, open sources of H2O2 can be achieved by superoxide dismutase-mimicking AFCT nanozymes. In response to the dual stimuli of H2O2 and mild acidity, the peroxidase-mimicking activity of AFCT nanozymes not only catalyzes the accumulation of H2O2 to generate ·OH but also converts the loaded 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) into its oxidized form with strong near-infrared absorption, specifically unlocking its photothermal and photoacoustic imaging properties. Intriguingly, the undesired thermoresistance of tumor cells can be greatly alleviated owing to the reduced expression of heat shock proteins enabled by NADH POD-mimicking AFCT-mediated NADH depletion and consequent restriction of ATP supply. Meanwhile, the accumulated ·OH can facilitate both apoptosis and ferroptosis in tumor cells, resulting in synergistic therapeutic outcomes in combination with TME-activated mild PTT.


Assuntos
Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Fototerapia/métodos , Peróxido de Hidrogênio , Transporte de Elétrons , NAD , Nanopartículas/uso terapêutico , Neoplasias/terapia , Linhagem Celular Tumoral , Microambiente Tumoral
5.
Small ; 19(36): e2301349, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37127877

RESUMO

Increasing the yield of reactive oxygen species (ROS) to enhance oxidative stress in cells is an eternal goal in cancer therapy. In this study, BiVO4 artificial nanozyme is developed with adjustable vanadium vacancy for ultrasound (US) enhanced piezoelectric/sonodynamic therapy. Under US excitation, the vanadium vacancy-rich BiVO4 nanosheets (abbreviated Vv -r BiVO4 NSs) facilitate the generation of a large number of electrons to improve the ROS yield. Meanwhile, the mechanical strain imposed by US irradiation makes the Vv -r BiVO4 NSs display a typical piezoelectric response, which tilts the conduction band to be more negative and the valance band more positive than the redox potentials of O2 /O2 •- and H2 O/·OH, boosting the efficiency of ROS generation. Both density functional theory calculations and experiments confirm that the introduction of cationic vacancy can improve the sonodynamic effect. As expected, Vv -r BiVO4 NSs have better peroxidase enzyme catalytic and glutathione depletion activities, resulting in increased intracellular oxidative stress. This triple amplification strategy of oxidative stress induced by US substantially inhibits the growth of cancer cells. The work may open an avenue to achieve a synergetic therapy by introducing cationic vacancy, broadening the biomedical use of piezoelectric materials.


Assuntos
Corantes , Vanádio , Espécies Reativas de Oxigênio , Ultrassonografia , Catálise
6.
Inorg Chem ; 62(27): 10805-10821, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37364168

RESUMO

Agile and efficient upconversion luminescence (UCL) fine-tuning strategies are the most demanded for in the frontier applications of highly doped upconversion nanoparticles (UCNPs). By doping Zn2+ ions into NaHoF4 and NaGdF4:Yb3+ shells using the oleate method, the separate influences of Zn2+ on Ho3+ and Yb3+ ions in UCL-related processes were analyzed in detail, revealing relevant UCL changes and underlying energy mechanisms from a novel but explicit perspective. Different behaviors of green and red UCL before and after Zn2+-ion doping were attributed to the disparities in the energy pathways and features of the sample structures. Herein, the populations of 5S2/5F4 and 5F5 states, not the usually mentioned decay time, decided the UCL intensities of the NaHoF4@NaYbF4-structured highly doped UCNPs. The advantageous small sizes and intense single-band red UCL of these UCNPs were further developed by combining our previous strategies with introducing Zn2+ ions into the NaHoF4 matrix. Overcoming energy loss by surface quenchers and Zn2+-triggered inner defects is the key factor in maximizing 4f-4f transitions. To the best of our knowledge, the current study is the first attempt to date to experimentally reveal separate impacts of the heteroions on activators and sensitizers in UCL-related processes and can deepen the theoretical investigation of Ho-based UCL for the broadened applications of NaHoF4 UCNPs.

7.
Nano Lett ; 22(15): 6409-6417, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35867897

RESUMO

The development of a manageable reactive nitrogen species-potentiated nitrosative stress induction system for cancer therapy has remained elusive. Herein, tailored silica-based nanoscintillators were reported for low-dosage X-ray boosting for the in situ formation of highly cytotoxic peroxynitrite (ONOO-). Significantly, cellular nitrosative stress revolving around the intracellular protein tyrosine nitration through ONOO- pathways was explored. High-energy X-rays were directly deposited on silica-based nanoscintillators, forming the concept of an open source and a reduced expenditure-aggravated DNA damage strategy. Moreover, the resultant ONOO-, along with the released nitric oxide, not only can act as "oxygen suppliers" to combat tumor hypoxia but also can induce mitochondrial damage to initiate caspase-mediated apoptosis, further improving the therapeutic efficacy of radiotherapy. Thus, the design of advanced nanoscintillators with specific enhanced nitrosative stress offers promising potential for postoperative radiotherapy of colon cancer.


Assuntos
Neoplasias do Colo , Ácido Peroxinitroso , Neoplasias do Colo/radioterapia , Humanos , Óxido Nítrico/metabolismo , Estresse Nitrosativo , Ácido Peroxinitroso/metabolismo , Espécies Reativas de Nitrogênio/metabolismo , Dióxido de Silício
8.
Small ; 18(28): e2200786, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35661402

RESUMO

Mild photothermal therapy (PTT, <45 °C) can prevent tumor metastasis and heat damage to normal tissue, compared with traditional PTT (>50 °C). However, its therapeutic efficacy is limited owing to the hypoxic tumor environment and tumor thermoresistance owing to the overproduction of heat shock proteins (HSPs). Herein, a near-infrared (NIR)-triggered theranostic nanoplatform (GA-PB@MONs@LA) is designed for synergistic mild PTT and enhanced Fenton nanocatalytic therapy against hypoxic tumors. The nanoplatform is fabricated by the confined formation of Prussian blue (PB) nanoparticles in mesoporous organosilica nanoparticles (MONs), followed by the loading of gambogic acid (GA), an HSP90 inhibitor, and coating with thermo-sensitive lauric acid (LA). Upon NIR irradiation, the photothermal effect (44 °C) of PB not only induces apoptosis of tumor cells but also triggers the on-demand release of GA, inhibiting the production of HSP90. Moreover, the delivered heat simultaneously enhances the catalase-like and Fenton activity of PB@MONs@LA in an acidic tumor microenvironment, relieving the tumor hypoxia and promoting the generation of highly toxic •OH. In addition, the nanoplatform enables magnetic resonance/photoacoustic dual-modal imaging. Thus, this study describes a distinctive paradigm for the development of NIR-triggered theranostic nanoplatforms for enhanced cancer therapy.


Assuntos
Antineoplásicos , Hipertermia Induzida , Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Preparações de Ação Retardada , Humanos , Hipertermia Induzida/métodos , Hipóxia/terapia , Neoplasias/terapia , Fototerapia/métodos , Medicina de Precisão , Nanomedicina Teranóstica/métodos , Microambiente Tumoral
9.
Small ; 16(43): e2003799, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33006248

RESUMO

It is absolutely imperative for development of material science to adjust upconversion luminescence (UCL) properties of highly doped upconversion nanoparticles (UCNPs) with special optical properties and prominent application prospects. In this work, featuring NaHoF4 @NaYbF4 (Ho@Yb) structures, sub-30 nm core-multishell UCNPs are synthesized with a small NaHoF4 core and varied Gd3+ /Yb3+ coexisting shells. X-ray diffraction, transmission electron microscopy, UCL spectrum, UCL lifetime, and pump power dependence are adhibited for characterization. Compared with the former work, except for a smaller total size, tunable emission in color from red to yellow to green, and intensity from low to stronger than that of traditional UCNPs is achieved for ≈10 nm NaHoF4 core size by means of changing number of layers and Gd3+ /Yb3+ concentration ratios in different layers. Besides, simultaneously doping Ho3+ into the shells will result in lowered UCL intensity and lifted green/red ratio. Surface energy loss and sensitizing energy supply, which can be modulated with inert shielding of Gd3+ and sensitization of Yb3+ , are proved to be the essential determinant. More UCL properties of these peculiar Ho@Yb UCNPs are uncovered and detailedly summarized, and the findings can help to expand the application scope of NaHoF4 into photoinduced therapy.

10.
Inorg Chem ; 59(7): 4909-4923, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32162905

RESUMO

Photodynamic therapy (PDT) is commonly employed in clinics to treat the cancer, but because of the hypoxic tumor microenvironment prevalent inside tumors, PDT therapeutic efficiency is not adequate hence limiting the effectiveness of PDT. Therefore, we designed a nanocomposite consisting of reduced nanographene oxide (rGO) modified with polyethylene glycol (PEG), manganese dioxide (MnO2), upconversion nanoparticles (UCNPs), and Chlorin e6 (Ce6) to spark oxygen production from H2O2 with the aim of relieving the tumor hypoxic microenvironments. For in vivo tumor PDT and photothermal therapy (PTT), UCNPs-Ce6-labeled rGO-MnO2-PEG nanocomposites were used as a therapeutic agent, augmenting the therapeutic efficiency of PDT via redox progression through the catalytic H2O2 decomposition pathway and further achieving excellent tumor inhibition. It is important to mention that degradation of MnO2 in an acidic cellular microenvironment leads to the creation of a massive volume of Mn2+ which was employed as a contrast mediator for magnetic resonance imaging (MRI). Our research postulates an approach to spark O2 formation through an internal stimulus to augment the efficiency of MRI- and computerized tomography (CT)-imaging-guided PDT and PTT.


Assuntos
Antineoplásicos/uso terapêutico , Nanocompostos/uso terapêutico , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/uso terapêutico , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Clorofilídeos , Feminino , Fluoretos/química , Fluoretos/efeitos da radiação , Fluoretos/uso terapêutico , Gadolínio/química , Gadolínio/efeitos da radiação , Gadolínio/uso terapêutico , Grafite/química , Grafite/uso terapêutico , Humanos , Raios Infravermelhos , Compostos de Manganês/química , Compostos de Manganês/uso terapêutico , Camundongos , Nanocompostos/química , Nanopartículas/química , Óxidos/química , Óxidos/uso terapêutico , Oxigênio/metabolismo , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Polietilenoglicóis/química , Polietilenoglicóis/uso terapêutico , Porfirinas/química , Porfirinas/efeitos da radiação , Microambiente Tumoral/fisiologia , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Small ; 14(13): e1703809, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29394469

RESUMO

Here a multifunctional nanoplatform (upconversion nanoparticles (UCNPs)-platinum(IV) (Pt(IV))-ZnFe2 O4 , denoted as UCPZ) is designed for collaborative cancer treatment, including photodynamic therapy (PDT), chemotherapy, and Fenton reaction. In the system, the UCNPs triggered by near-infrared light can convert low energy photons to high energy ones, which act as the UV-vis source to simultaneously mediate the PDT effect and Fenton's reaction of ZnFe2 O4 nanoparticles. Meanwhile, the Pt(IV) prodrugs can be reduced to high virulent Pt(II) by glutathione in the cancer cells, which can bond to DNA and inhibit the copy of DNA. The synergistic therapeutic effect is verified in vitro and in vivo results. The cleavage of Pt(IV) from UCNPs during the reduction process can shift the larger UCPZ nanoparticles (NPs) to the smaller ones, which promotes the enhanced permeability and retention (EPR) and deep tumor penetration. In addition, due to the inherent upconversion luminescence (UCL) and the doped Yb3+ and Fe3+ in UCPZ, this system can serve as a multimodality bioimaging contrast agent, covering UCL, X-ray computed tomography, magnetic resonance imaging, and photoacoustic. A smart all-in-one imaging-guided diagnosis and treatment system is realized, which should have a potential value in the treatment of tumor.


Assuntos
Glutationa/química , Glutationa/metabolismo , Imagem Multimodal/métodos , Nanocompostos/química , Nanopartículas/química , Platina/química , Meios de Contraste/química , Células HeLa , Hemólise/efeitos dos fármacos , Humanos , Imageamento por Ressonância Magnética , Nanocompostos/efeitos adversos , Fotoquimioterapia/métodos , Pró-Fármacos/química , Tomografia Computadorizada por Raios X
12.
Inorg Chem ; 57(16): 9988-9998, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30070830

RESUMO

The strategy of diagnosis-to-therapy to realize the integration of imaging and high antitumor efficiency has become the most promising method. Light-induced therapeutic technologies have drawn considerable interest. However, the limited penetration depth of UV/vis excitation and relatively low efficiency are the main obstacles for its further clinic application. For this concern, we presented a facile method to anchor ultrasmall ZnFe2O4 nanoparticles and upconversion luminescence nanoparticles (UCNPs) on graphene oxide (GO) nanosheets (GO/ZnFe2O4/UCNPs, abbreviated as GZUC). To solve the penetration question, here we introduced Tm3+-doped UCNPs to convert the high-penetrated near-infrared (NIR) light into UV/vis photons to activate the photodynamic process. In this system, the dual phototherapy from GO and ZnFe2O4 has been realized upon NIR laser irradiation. Combined with the photodynamic therapy (PDT) based on Fenton reaction that ZnFe2O4 nanoparticles react with excessive H2O2 in tumor microenvironment to produce toxic hydroxyl radicals (·OH), an excellent anticancer efficiency has been achieved. Furthermore, 4-fold imaging including upconversion luminescence (UCL), computed tomography (CT), magnetic resonance imaging (MRI) and photoacoustic tomography (PAT) has been obtained due to its intrinsic properties, thereby successfully realizing diagnosis-monitored therapy. Our demonstration provided a feasible strategy to solve the main problems in current light-triggered theranostic.

13.
Inorg Chem ; 57(9): 4864-4876, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29634255

RESUMO

Multifunctional nanotheranostic agent with high performance for tumor site-specific generation of singlet oxygen (1O2) as well as imaging-guidance is crucial to laser-mediated photodynamic therapy. Here, we introduced a versatile strategy to design a smart nanoplatform using phase change material (PCM) to encapsulate photosensitizer (zinc phthalocyanine, ZnPc) in copper sulfide loaded Fe-doped tantalum oxide (Fe-mTa2O5@CuS) nanoparticles. When irradiated by 808 nm laser, the PCM is melted due to the hyperthermia effect from CuS nanoparticles, inducing the release of ZnPc to produce toxic 1O2 triggered by 650 nm light with very low power density (5 mW/cm2). Then, the produced heat and toxic 1O2 can kill tumor cells in vitro and in vivo effectively. Furthermore, the special properties of Fe-mTa2O5 endow the nanoplatform with excellent computed tomography (CT) and T1-weighted magnetic resonance imaging ( T1-MRI) performance for guiding and real-time monitoring of therapeutic effect. This work presents a feasible way to design smart nanoplatform for controllable generation of heat and 1O2, achieving CT/ T1-MRI dual-modal imaging-guided phototherapy.


Assuntos
Cobre/química , Indóis/química , Ferro/química , Imagem Óptica , Compostos Organometálicos/química , Óxidos/química , Fotoquimioterapia , Tantálio/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Cobre/farmacologia , Células HeLa , Humanos , Indóis/farmacologia , Ferro/farmacologia , Imageamento por Ressonância Magnética , Camundongos , Nanopartículas/química , Neoplasias Experimentais/diagnóstico por imagem , Compostos Organometálicos/farmacologia , Óxidos/farmacologia , Tamanho da Partícula , Propriedades de Superfície , Tantálio/farmacologia , Nanomedicina Teranóstica , Tomografia Computadorizada por Raios X
14.
Small ; 13(36)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28737290

RESUMO

Near infrared (NIR) light triggered phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) affords superior outcome in cancer treatment. However, the reactive oxygen species (ROS) generated by NIR-excited upconversion nanostructure is limited by the feeble upconverted light which cannot activate PDT agents efficiently. Here, an IR-808 dye sensitized upconversion nanoparticle (UCNP) with a chlorin e6 (Ce6)-functionalized silica layer is developed for PDT agent. The two booster effectors (dye-sensitization and core-shell enhancement) synergistically amplify the upconversion efficiency, therefore achieving superbright visible emission under low 808 nm light excitation. The markedly amplified red light subsequently triggers the photosensitizer (Ce6) to produce large amount of ROS for efficient PDT. After the silica is endowed with positive surface, these PDT nanoparticles can be easily grafted on MoS2 nanosheet. As the optimal laser wavelength of UCNPs is consistent with that of MoS2 nanosheet for PTT, the invented nanoplatform generates both abundant ROS and local hyperthermia upon a single 808 nm laser irradiation. Both the in vitro and in vivo assays validate that the innovated nanostructure presents excellent cancer cell inhibition effectiveness by taking advantages of the synergistic PTT and PDT, simultaneously, posing trimodal (upconversion luminescence/computed tomography (CT)/magnetic resonance imaging (MRI) imaging capability.


Assuntos
Diagnóstico por Imagem , Dissulfetos/química , Raios Infravermelhos , Molibdênio/química , Nanopartículas/química , Fototerapia , Animais , Peso Corporal , Sobrevivência Celular , Clorofilídeos , Células HeLa , Humanos , Imageamento por Ressonância Magnética , Camundongos Endogâmicos BALB C , Nanopartículas/ultraestrutura , Especificidade de Órgãos , Porfirinas/química , Dióxido de Silício/química , Tomografia Computadorizada por Raios X , Carga Tumoral , Difração de Raios X
15.
Small ; 13(48)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29094517

RESUMO

The low reactive oxygen species production capability and the shallow tissue penetration of excited light (UV) are still two barriers in photodynamic therapy (PDT). Here, Au cluster anchored black anatase TiO2-x nanotubes (abbreviated as Au25 /B-TiO2-x NTs) are synthesized by gaseous reduction of anatase TiO2 NTs and subsequent deposition of noble metal. The Au25 /B-TiO2-x NTs with thickness of about 2 nm exhibit excellent PDT performance. The reduction process increased the density of Ti3+ on the surface of TiO2 , which effectively depresses the recombination of electron and hole. Furthermore, after modification of Au25 nanoclusters, the PDT efficiency is further enhanced owing to the changed electrical distribution in the composite, which forms a shallow potential well on the metal-TiO2 interface to further hamper the recombination of electron and hole. Especially, the reduction of anatase TiO2 can expend the light response range (UV) of TiO2 to the visible and even near infrared (NIR) light region with high tissue penetration depth. When excited by NIR light, the nanoplatform shows markedly improved therapeutic efficacy attributed to the photocatalytic synergistic effect, and promotes separation or restrained recombination of electron and hole, which is verified by experimental results in vitro and in vivo.


Assuntos
Ouro/química , Raios Infravermelhos , Nanopartículas/química , Nanotubos/química , Fotoquimioterapia , Titânio/química , Animais , Antineoplásicos/farmacologia , Catálise , Células HeLa , Hemólise/efeitos dos fármacos , Humanos , Camundongos , Nanopartículas/ultraestrutura , Espectrofotometria Ultravioleta
16.
Chemistry ; 21(19): 7119-26, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25801647

RESUMO

A hierarchical hollow hybrid composite, namely, MnO2 nanosheets grown on nitrogen-doped hollow carbon shells (NHCSs@MnO2 ), was synthesized by a facile in situ growth process followed by calcination. The composite has a high surface area (251 m(2) g(-1) ) and mesopores (4.5 nm in diameter), which can efficiently facilitate transport during electrochemical cycling. Owing to the synergistic effect of NHCSs and MnO2 , the composite shows a high specific capacitance of 306 F g(-1) , good rate capability, and an excellent cycling stability of 95.2 % after 5000 cycles at a high current density of 8 A g(-1) . More importantly, an asymmetric supercapacitor (ASC) assembled by using NHCSs@MnO2 and activated carbon as the positive and negative electrodes exhibits high specific capacitance (105.5 F g(-1) at 0.5 A g(-1) and 78.5 F g(-1) at 10 A g(-1) ) with excellent rate capability, achieves a maximum energy density of 43.9 Wh kg(-1) at a power density of 408 W kg(-1) , and has high stability, whereby the ASC retains 81.4 % of its initial capacitance at a current density of 5 A g(-1) after 4000 cycles. Therefore, the NHCSs@MnO2 electrode material is a promising candidate for future energy-storage systems.

17.
Inorg Chem ; 53(2): 998-1008, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24364762

RESUMO

Uniform LaF3 and LaCO3F hollow microspheres were successfully synthesized through a surfactant-free route by employing La(OH)CO3 colloidal microspheres as a sacrificial template and NaBF4 as the fluorine source. The synthetic process consists of two steps: the preparation of a La(OH)CO3 precursor via a facile urea-based precipitation and the following formation of lanthanide fluoride hollow microspheres under aqueous conditions at low temperature (50 °C) and short reaction time (3 h), without using any surfactant and catalyst. The formation of hollow spheres with controlled size can be assigned to the Kirkendall effect. It is found that the phase and structure of the products can be simply tuned by changing the pH values of the solution. Time-dependent experiments were employed to study the possible formation process. N2 adsorption/desorption results indicate the mesoporous nature of LaF3 hollow spheres. Yb(3+)/Er(3+) (Ho(3+)) and Yb(3+)/Tm(3+)-doped LaF3 hollow spheres exhibit characteristic up-conversion (UC) emissions of Er(3+) (Ho(3+)) and Tm(3+) under 980 nm laser-diode excitation, and Ce(3+)/Tb(3+)-doped LaF3 and LaCO3F emit bright yellow-green and near-white light under UV irradiation, respectively. In particular, LaF3:Yb/Er and LaCO3F:Ce/Tb hollow microspheres exhibit obvious sustained and pH-dependent doxorubicin release properties. The luminescent properties of the carriers allow them to be tracked or monitored during the release or therapy process, suggesting their high potential in the biomedical field.


Assuntos
Carbonatos/química , Carbonatos/síntese química , Portadores de Fármacos/química , Portadores de Fármacos/síntese química , Fluoretos/química , Fluoretos/síntese química , Lantânio/química , Microesferas , Carbonatos/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Doxorrubicina/química , Portadores de Fármacos/toxicidade , Fluoretos/toxicidade , Lantânio/toxicidade , Medições Luminescentes , Temperatura , Raios Ultravioleta
18.
Inorg Chem ; 53(20): 10917-27, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25285784

RESUMO

A series of hollow and luminescent capsules have been fabricated by covering luminescent Gd2O3:Yb/Tm nanoparticles on the surface of uniform hollow mesoporous silica capsules (HMSCs), which were obtained from an etching process using Fe3O4 as hard templates. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), up-conversion (UC) fluorescence spectra, and N2 adsorption-desorption were used to characterize these samples. It is found that the as-prepared products have mesoporous pores, large specific surface, and high dispersity. In particular, the size, shape, surface area, and interior space of the composites can be finely tuned by adjusting the size and morphology of the magnetic cores. Under 980 nm near-infrared (NIR) laser irradiation, the composites show characteristic blue UC emissions of Tm(3+) even after carrying doxorubicin hydrochloride (DOX). The drug-release test reveals that the capsules showed an apparent sustained release character and released in a pH-sensitive manner. Interestingly, the UC luminescence intensity of the drug-carrying system increases with the released DOX, realizing the possibility to track or monitor the released drug by the change of UC fluorescence simultaneously, which should be highly promising in anticancer drug delivery and targeted cancer therapy.


Assuntos
Doxorrubicina/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Gadolínio/química , Dióxido de Silício/química , Túlio/química , Itérbio/química , Antibióticos Antineoplásicos/química , Luminescência , Nanopartículas/química , Tamanho da Partícula , Porosidade , Propriedades de Superfície
19.
J Nanosci Nanotechnol ; 14(5): 3503-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24734578

RESUMO

YF3 nanoparticles with different morphology, dimension, and dispersity have been synthesized through a simple solvothermal method by using n-octanol and n-octylamine as a mixed solvent and lanthanide acetylacetonate as the RE3+ source. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectrum (EDS) and up-conversion (UC) photoluminescence spectra were used to characterize the samples. The results reveal that the morphology and dimension of the as-prepared nanoparticles can be regulated by adjusting n-octanol/ n-octylamine volume ratio in the initial system. Besides, by doping with different rare-earth elements (Yb/Er, Yb/Tm, Yb/Ho), the as-prepared YF3 samples can emit characteristic green, blue, and yellow light under 980 nm laser excitation. Additionally, when being co-doped with the activator ion-pairs Tm/Er and Tm/Ho, the color of the emission light can be further modified by adjusting the Yb3+ ion content.

20.
J Nanosci Nanotechnol ; 14(5): 3509-14, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24734579

RESUMO

In this paper, well-defined tetragonal-phase LiYF4:Yb3+,Er3+/Tm3+/Ho3+ micro-crystals with octahedral morphology were successfully prepared through a surfactant-free molten salt process for the first time. By gradually increasing the LiF content in the NaNO3-KNO3 reaction medium, the crystal phase transforms from a mixture of YF3 and LiYF4 to pure tetragonal-phase LiYF4. The possible formation process for the phase and morphology evolution is also presented. Moreover, upon 980 nm laser diode (LD) excitation, the lanthanide ions (Yb3+, Er3+/Tm3+/Ho3+) doped LiYF4 crystals exhibit intense upconversion emission lights. By tuning the sensitizer concentrations of Yb3+ ions in LiYF4:Yb3+,Er3+, the relative intensities of green and red emissions can be precisely adjusted under single wavelength excitation. Consequently, multicolor upconversion emissions can be obtained. On the other hand, UC mechanisms were also given based on the emission spectra and the plot of luminescence intensity to pump power.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA