Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 16(12): 5732-8, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24525964

RESUMO

Solar cells are generally optimised for operation under AM1.5 100 mW cm(-2) conditions. This is also typically done for polymer solar cells. However, one of the entry markets for this emerging technology is portable electronics. For this market, the spectral shape and intensity of typical illumination conditions deviate considerably from the standard test conditions (AM1.5, 100 mW cm(-2), at 25 °C). The performance of polymer solar cells is strongly dependent on the intensity and spectral shape of the light source. For this reason the cells should be optimised for the specific application. Here a theoretical model is presented that describes the light intensity dependence of P3HT:[C60]PCBM solar cells. It is based on the Shockley diode equation, combined with a metal-insulator-metal model. In this way the observed light intensity dependence of P3HT:[C60]PCBM solar cells can be described using a 1-diode model, allowing fast optimization of polymer solar cells and module design.

2.
Analyst ; 138(22): 6801-10, 2013 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-24058924

RESUMO

With the recent developments in secondary ion mass spectrometry (SIMS), it is now possible to obtain molecular depth profiles and 3D molecular images of organic thin films, i.e. SIMS depth profiles where the molecular information of the mass spectrum is retained through the sputtering of the sample. Several approaches have been proposed for "damageless" profiling, including the sputtering with SF5(+) and C60(+) clusters, low energy Cs(+) ions and, more recently, large noble gas clusters (Ar500-5000(+)). In this article, we evaluate the merits of these different approaches for the in depth analysis of organic photovoltaic heterojunctions involving poly(3-hexylthiophene) (P3HT) as the electron donor and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) as the acceptor. It is demonstrated that the use of 30 keV C60(3+) and 500 eV Cs(+) (500 eV per atom) leads to strong artifacts for layers in which the fullerene derivative PCBM is involved, related to crosslinking and topography development. In comparison, the profiles obtained using 10 keV Ar1700(+) (∼6 eV per atom) do not indicate any sign of artifacts and reveal fine compositional details in the blends. However, increasing the energy of the Ar cluster beam beyond that value leads to irreversible damage and failure of the molecular depth profiling. The profile qualities, apparent interface widths and sputtering yields are analyzed in detail. On the grounds of these experiments and recent molecular dynamics simulations, the discussion addresses the issues of damage and crater formation induced by the sputtering and the analysis ions in such radiation-sensitive materials, and their effects on the profile quality and the depth resolution. Solutions are proposed to optimize the depth resolution using either large Ar clusters or low energy cesium projectiles for sputtering and/or analysis.

3.
Nanotechnology ; 24(48): 484014, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24196842

RESUMO

Highly conductive screen printed metallic (silver) structures (current collecting grids) combined with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) are a viable replacement for indium tin oxide (ITO) and inkjet printed silver as transparent electrode materials. To provide successful integration into organic photovoltaic (OPV) devices, screen printed silver current collecting grids should be embedded into a substrate to avoid topology issues. In this study micron-thick conductive structures are embedded and integrated into OPV devices. The embedded structures are produced roll-to-roll with optimized process settings and materials. Topology measurements show that the embedded grids are well suited for integration into OPV devices since the surface is almost without spikes and has low surface roughness. JV measurements of OPV devices with embedded structures on a polyethylene terephthalate/silicon nitride (PET/SiN) substrate show an efficiency of 2.15%, which is significantly higher than identical flexible devices with ITO (1.02%) and inkjet printed silver (1.48%). The use of embedded screen printed silver instead of ITO and inkjet printed silver in OPV devices will allow for higher efficiency devices which can be produced with larger design and process freedom.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA