Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
FASEB J ; 36(2): e22143, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34985777

RESUMO

Adenosine deaminase acting on RNA 2 (ADAR2), an RNA editing enzyme is involved in a site-selective modification of adenosine (A) to inosine (I) in double-stranded RNA (dsRNA). Its role in the lungs is unknown. The phenotypic characterization of Adarb1 mice that lacked ADAR2 auto-regulation due to the deletion of editing complementary sequence (ΔECS mice) determined the functional role of ADAR2 in the lungs. ADAR2 protein expression increased in the ΔECS mice. These mice display immune cell infiltration and alveolar disorganization. The lung wet by dry ratio indicates there is no lung edema in ΔECS mice. Bronchoalveolar lavage (BAL) analysis of ΔECS mice reveals a significant increase in neutrophils. Interestingly, ΔECS mice spontaneously develop lung fibrosis as indicated by Sirius red staining of collagen fibers in the lung sections and a significant increase in hydroxyproline level in their lungs. ADAR2 expression increased significantly in a bleomycin mouse model, implicating a role of ADAR2 in lung fibrosis. Furthermore, there is a likely possibility that the genetically modified ΔECS mice does not model the physiological or pathophysiological process of lung fibrosis. Nevertheless, this model is useful in interrogating the role of ADAR2 in the lungs. The Ctgf mRNA and connective tissue growth factor (CTGF) protein significantly increased in ΔECS lungs and occurs in bronchial epithelial cells. There is a significant increase in Human antigen R (ELAVL1; HuR) protein levels in ΔECS lungs and suggests a role in stabilizing Ctgf mRNA. Lung mechanics such as total respiratory resistance, Newtonian resistance and tissue damping were increased, whereas inspiratory capacity was decreased in the ΔECS mice. Taken together, these data indicate that overexpression of ADAR2 causes spontaneous lung fibrosis via HuR-mediated CTGF signaling and implicate a role for ADAR2 auto-regulation in lung homeostasis. The identification of ADAR2 target genes in ΔECS mice would facilitate a mechanistic understanding of the role of ADAR2 in the lungs and provide a therapeutic strategy for lung fibrosis.


Assuntos
Adenosina Desaminase/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Pulmão/metabolismo , Fibrose Pulmonar/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/fisiologia , Animais , Bleomicina/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/tratamento farmacológico , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Am J Physiol Cell Physiol ; 316(4): C492-C508, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649915

RESUMO

Aging is a key contributor for subclinical progression of late-onset lung diseases. Basal, club, and type II alveolar epithelial cells (AECs) are lung epithelial progenitors whose capacities of differentiation are extensively studied. The timely transition of these cells in response to environmental changes helps maintain the intricate organization of lung structure. However, it remains unclear how aging affects their behavior. This paper demonstrates that the protein expression profiles of a type II AEC marker, prosurfactant protein C (pro-SPC), and a basal cell marker, p63, are altered in the lungs of 14-mo-old versus 7- to 9-wk-old mice. Expression of NH2-terminal-truncated forms of p63 (ΔNp63), a basal cell marker, and claudin-10, a club cell marker, in cytoplasmic extracts of lungs of 14-mo-old mice was upregulated. In contrast, nuclear expression of full-length forms of p63 (TAp63) decreases with age. These alterations in protein expression profiles coincide with dramatic changes in lung functions including compliance. Whole tissue lysates of middle-aged versus aged rhesus monkey lungs display similar age-associated alterations in pro-SPC expression. An age-associated decrease of TAp63 in nuclear lysates was observed in aged monkey group. Moreover, the lungs of 14-mo-old versus 7- to 9-wk-old mice display a wider spreading of ΔNp63-positive CCSP-positive bronchiolar epithelial cells. This expansion did not involve upregulation of Ki67, a representative proliferation marker. Collectively, it is postulated that 1) this expansion is secondary to a transition of progenitor cells committed to club cells from ΔNp63-negative to ΔNp63-positive status, and 2) high levels of cytoplasmic ΔNp63 expression trigger club cell migration.


Assuntos
Envelhecimento/metabolismo , Células Epiteliais/metabolismo , Pulmão/metabolismo , Transativadores/biossíntese , Uteroglobina/biossíntese , Envelhecimento/patologia , Sequência de Aminoácidos , Animais , Células Epiteliais/patologia , Expressão Gênica , Células HEK293 , Humanos , Pulmão/patologia , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Células-Tronco/metabolismo , Células-Tronco/patologia , Transativadores/genética , Uteroglobina/genética
3.
Am J Physiol Lung Cell Mol Physiol ; 314(5): L860-L870, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29388469

RESUMO

Critically ill patients are commonly treated with high levels of oxygen, hyperoxia, for prolonged periods of time. Unfortunately, extended exposure to hyperoxia can exacerbate respiratory failure and lead to a high mortality rate. Mitochondrial A-kinase anchoring protein (Akap) has been shown to regulate mitochondrial function. It has been reported that, under hypoxic conditions, Akap121 undergoes proteolytic degradation and promotes cardiac injury. However, the role of Akap1 in hyperoxia-induced acute lung injury (ALI) is largely unknown. To address this gap in our understanding of Akap1, we exposed wild-type ( wt) and Akap1-/- mice to 100% oxygen for 48 h, a time point associated with lung damage in the murine model of ALI. We found that under hyperoxia, Akap1-/- mice display increased levels of proinflammatory cytokines, immune cell infiltration, and protein leakage in lungs, as well as increased alveolar capillary permeability compared with wt controls. Further analysis revealed that Akap1 deletion enhances lung NF-κB p65 activity as assessed by immunoblotting and DNA-binding assay and mitochondrial autophagy-related markers, PINK1 and Parkin. Ultrastructural analysis using electron microscopy revealed that Akap1 deletion was associated with remarkably aberrant mitochondria and lamellar bodies in type II alveolar epithelial cells. Taken together, these results demonstrate that Akap1 genetic deletion increases the severity of hyperoxia-induced acute lung injury in mice.


Assuntos
Proteínas de Ancoragem à Quinase A/fisiologia , Lesão Pulmonar Aguda/etiologia , Células Epiteliais Alveolares/patologia , Hiperóxia/complicações , Mitocôndrias/patologia , Oxigênio/metabolismo , Lesão Pulmonar Aguda/patologia , Células Epiteliais Alveolares/metabolismo , Animais , Deleção de Genes , Hiperóxia/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Deleção de Sequência
4.
Am J Physiol Lung Cell Mol Physiol ; 310(6): L572-81, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26747786

RESUMO

Increasing evidence shows that hyperoxia is a serious complication of oxygen therapy in acutely ill patients that causes excessive production of free radicals leading to hyperoxia-induced acute lung injury (HALI). Our previous studies have shown that P2X7 receptor activation is required for inflammasome activation during HALI. However, the role of P2X7 in HALI is unclear. The main aim of this study was to determine the effect of P2X7 receptor gene deletion on HALI. Wild-type (WT) and P2X7 knockout (P2X7 KO) mice were exposed to 100% O2 for 72 h. P2X7 KO mice treated with hyperoxia had enhanced survival in 100% O2 compared with the WT mice. Hyperoxia-induced recruitment of inflammatory cells and elevation of IL-1ß, TNF-α, monocyte chemoattractant protein-1, and IL-6 levels were attenuated in P2X7 KO mice. P2X7 deletion decreased lung edema and alveolar protein content, which are associated with enhanced alveolar fluid clearance. In addition, activation of the inflammasome was suppressed in P2X7-deficient alveolar macrophages and was associated with suppression of IL-1ß release. Furthermore, P2X7-deficient alveolar macrophage in type II alveolar epithelial cells (AECs) coculture model abolished protein permeability across mouse type II AEC monolayers. Deletion of P2X7 does not lead to a decrease in epithelial sodium channel expression in cocultures of alveolar macrophages and type II AECs. Taken together, these findings show that deletion of P2X7 is a protective factor and therapeutic target for the amelioration of hyperoxia-induced lung injury.


Assuntos
Lesão Pulmonar Aguda/genética , Hiperóxia/complicações , Inflamassomos/metabolismo , Receptores Purinérgicos P2X7/genética , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/imunologia , Células Epiteliais Alveolares/metabolismo , Animais , Caspase 1/metabolismo , Células Cultivadas , Técnicas de Cocultura , Feminino , Hiperóxia/genética , Hiperóxia/imunologia , Interleucina-1beta/biossíntese , Peroxidação de Lipídeos , Masculino , Potenciais da Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infiltração de Neutrófilos , Fatores de Proteção , Receptores Purinérgicos P2X7/metabolismo
5.
Cell Physiol Biochem ; 36(5): 2012-24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26202361

RESUMO

BACKGROUND: Neuregulin (NRG)-1-human epidermal receptor (HER)-2 signaling pathway is a key regulator of IL-1ß-mediated pulmonary inflammation and epithelial permeability. The inflammasome is a newly discovered molecular platform required for caspase-1 activation and maturation of IL-1ß. However, the role of the inflammasome in NRG-1-HER2 signaling-mediated alveolar cell permeability is unknown. METHODS: The inflammasome was activated or inhibited in THP-1 cells; supernatants from these cells were added to A549 cells and human small airway epithelial cells (HSAEC). The protein expression of NRG-1 and phospho-HER2 (pHER2) were measured by Western blot analysis and epithelial permeability was measured using Lucifer yellow dye. RESULTS: Results reveal that alveolar permeability in A549 cells and HSAEC is increased when treated with supernatants of inflammasome-activated THP-1 cells. Alveolar permeability is significantly suppressed when treated with supernatant of inflammasome-inhibited THP-1 cells. Inflammasome-mediated permeability is decreased when A549 cells and HSAEC are pretreated with IL-1ß receptor antagonist (IL-1ßRA). In addition, HER2 kinase inhibitor AG825 or NRG-1 inhibitor TAPI inhibits inflammasome-mediated permeability in A549 cells and HSAEC demonstrating critical roles of IL-1ß, NRG-1, and HER2 in inflammasome-mediated alveolar permeability. CONCLUSION: These findings suggest that inflammasome-induced alveolar cell permeability is mediated by NRG-1/HER2 signaling through IL-1ß regulation.


Assuntos
Inflamassomos , Neuregulina-1/metabolismo , Linhagem Celular Tumoral , Genes erbB-2 , Humanos , Interleucina-1beta/metabolismo , Alvéolos Pulmonares
6.
Cell Immunol ; 297(1): 40-5, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26123077

RESUMO

Incomplete clearance of apoptotic cells and reactive oxygen species (ROS) release are known to trigger inflammasome activation causing severe inflammation in acute lung injury and various metabolic and autoimmune diseases. Moreover, it has been reported that apoptotic cell clearance and ROS-mediated apoptosis critically depend on mitochondrial uncoupling protein-2 (UCP2). However, the relationship between UCP2 and inflammasome activation has not been studied. This report investigates the role of UCP2 in the expression and activation of NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome in human macrophages. We found that UCP2 overexpression significantly enhanced the expression levels of NLRP3. The NLRP3 expression levels were significantly suppressed in THP1 cells treated with genipin, a UCP2 inhibitor, compared to controls. In addition, genipin altered adenosine triphosphate (ATP)- and hydrogen peroxide (H2O2)-mediated interleukin-1 beta (IL-1ß) secretion and significantly suppressed caspase-1 activity in inflammasome-activated human macrophages. Taken together, our results suggest that genipin modulates NLRP3 inflammasome activation and ATP- or H2O2-mediated IL-1ß release.


Assuntos
Proteínas de Transporte/antagonistas & inibidores , Inflamassomos/efeitos dos fármacos , Canais Iônicos/imunologia , Iridoides/farmacologia , Proteínas Mitocondriais/imunologia , Apoptose/imunologia , Proteínas de Transporte/biossíntese , Proteínas de Transporte/metabolismo , Caspase 1/imunologia , Células Cultivadas , Ativação Enzimática/imunologia , Regulação da Expressão Gênica , Humanos , Inflamassomos/metabolismo , Inflamação/imunologia , Interleucina-1beta/imunologia , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/biossíntese , Macrófagos/imunologia , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/biossíntese , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio/imunologia , Proteína Desacopladora 2
7.
Am J Physiol Cell Physiol ; 306(11): C999-C1007, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24696144

RESUMO

Hyperoxic acute lung injury (HALI) is characterized by inflammation and epithelial cell death. CLOCK genes are master regulators of circadian rhythm also implicated in inflammation and lung diseases. However, the relationship of CLOCK genes in hyperoxia-induced lung injury has not been studied. This study will determine if HALI alters CLOCK gene expression. To test this, wild-type and NALP3(-/-) mice were exposed to room air or hyperoxia for 24, 48, or 72 h. In addition, mice were exposed to different concentrations of hyperoxia (50, 75, or 100% O2) or room air for 72 h. The mRNA and protein levels of lung CLOCK genes, based on quantitative PCR and Western blot analysis, respectively, and their target genes are significantly elevated in mice exposed to hyperoxia compared with controls. Alterations in CLOCK genes are associated with increased inflammatory markers in bronchoalveolar lavage fluid of hyperoxic mice compared with controls. Histological examination of mice lungs exposed to hyperoxia show increased inflammation and alveolar congestion compared with controls. Our results indicate sequential increase in CLOCK gene expression in lungs of mice exposed to hyperoxia compared with controls. Additionally, data suggest a dose-dependent increase in CLOCK gene expression with increased oxygen concentrations. To validate if the expression changes related to CLOCK genes are indeed associated with inflammation, NALP3(-/-) was introduced to analyze loss of function in inflammation. Western blot analysis showed significant CLOCK gene downregulation in NALP3(-/-) mice compared with wild-type controls. Together, our results demonstrate that hyperoxia-mediated lung inflammation is associated with alterations in CLOCK gene expression.


Assuntos
Proteínas CLOCK/biossíntese , Regulação da Expressão Gênica , Hiperóxia/metabolismo , Lesão Pulmonar/metabolismo , Animais , Proteínas CLOCK/genética , Hiperóxia/genética , Hiperóxia/patologia , Lesão Pulmonar/genética , Lesão Pulmonar/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
8.
Biochem Biophys Res Commun ; 439(3): 407-12, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23988448

RESUMO

Inflammasomes are multimeric protein complexes involved in the processing of IL-1ß through Caspase-1 cleavage. NLRP3 is the most widely studied inflammasome, which has been shown to respond to a large number of both endogenous and exogenous stimuli. Although studies have begun to define basic pathways for the activation of inflammasome and have been instrumental in identifying therapeutics for inflammasome related disorders; understanding the inflammasome activation at the molecular level is still incomplete. Recent functional studies indicate that microRNAs (miRs) regulate molecular pathways and can lead to diseased states when hampered or overexpressed. Mechanisms involving the miRNA regulatory network in the activation of inflammasome and IL-1ß processing is yet unknown. This report investigates the involvement of miR-133a-1 in the activation of inflammasome (NLRP3) and IL-1ß production. miR-133a-1 is known to target the mitochondrial uncoupling protein 2 (UCP2). The role of UCP2 in inflammasome activation has remained elusive. To understand the role of miR-133a-1 in regulating inflammasome activation, we either overexpressed or suppressed miR-133a-1 in differentiated THP1 cells that express the NLRP3 inflammasome. Levels of Caspase-1 and IL-1ß were analyzed by Western blot analysis. For the first time, we showed that overexpression of miR-133a-1 increases Caspase-1 p10 and IL-1ß p17 cleavage, concurrently suppressing mitochondrial uncoupling protein 2 (UCP2). Surprisingly, our results demonstrated that miR-133A-1 controls inflammasome activation without affecting the basal expression of the individual inflammasome components NLRP3 and ASC or its immediate downstream targets proIL-1ß and pro-Caspase-1. To confirm the involvement of UCP2 in the regulation of inflammasome activation, Caspase-1 p10 and IL-1ß p17 cleavage in UCP2 of overexpressed and silenced THP1 cells were studied. Suppression of UCP2 by siRNA enhanced the inflammasome activity stimulated by H2O2 and, conversely, overexpression of UCP2 decreased the inflammasome activation. Collectively, these studies suggest that miR-133a-1 suppresses inflammasome activation via the suppression of UCP2.


Assuntos
Inflamassomos/imunologia , Interleucina-1beta/imunologia , Canais Iônicos/imunologia , MicroRNAs/imunologia , Proteínas Mitocondriais/imunologia , Animais , Proteínas Reguladoras de Apoptose , Proteínas Adaptadoras de Sinalização CARD , Proteínas de Transporte/genética , Caspase 1/imunologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/genética , Regulação para Baixo , Inativação Gênica , Humanos , Canais Iônicos/genética , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína Desacopladora 2 , Regulação para Cima
9.
Biomolecules ; 13(2)2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36830685

RESUMO

Cadmium (Cd) is a toxic and carcinogenic substance that is present in the natural environment. The underlying biomolecular mechanisms of Cd toxicity are not completely understood, and it continues to be a significant research target due to its impact on public health. The primary routes of exposure are through ingestion of contaminated food and water and inhalation. Cd's long biological half-life of 10-30 years allows it to accumulate in the body, leading to organ dysfunction notably in the kidney, liver, bone, and lungs. Cd has similar biochemical characteristics to Zinc (Zn). It shares the import transporters, ZIP8 and ZIP14, to enter the cells. This competitive behavior can be observed in multiple instances throughout the progression of Cd toxicity. Future studies on the biochemical interactions of Cd and Zn will elucidate the potential protective effects of Zn supplementation in reducing the effects of Cd toxicity. In addition, research can be focused on discovering key proteins and effective pathways for Cd elimination that confer fewer adverse effects than current antioxidant therapies.


Assuntos
Cádmio , Zinco , Cádmio/toxicidade , Zinco/metabolismo , Proteínas/metabolismo , Pulmão/metabolismo , Fígado/metabolismo
10.
J Cell Physiol ; 227(9): 3310-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22169929

RESUMO

The hallmark of acute lung injury (ALI) is the influx of proinflammatory cytokines into lung tissue and alveolar permeability that ultimately leads to pulmonary edema. However, the mechanisms involved in inflammatory cytokine production and alveolar permeability are unclear. Recent studies suggest that excessive production of ceramide has clinical relevance as a mediator of pulmonary edema and ALI. Our earlier studies indicate that the activation of inflammasome promotes the processing and secretion of proinflammatory cytokines and causes alveolar permeability in ALI. However, the role of ceramide in inflammasome activation and the underlying mechanism in relation to alveolar permeability is not known. We hypothesized that ceramide activates the inflammasome and causes inflammatory cytokine production and alveolar epithelial permeability. To test this hypothesis, we analyzed the lung ceramide levels during hyperoxic ALI in mice. The effect of ceramide on activation of inflammasome and production of inflammatory cytokine was assessed in primary mouse alveolar macrophages and THP-1 cells. Alveolar transepithelial permeability was determined in alveolar epithelial type-II cells (AT-II) and THP-1 co-cultures. Our results reveal that ceramide causes inflammasome activation, induction of caspase-1, IL-1ß cleavage, and release of proinflammatory cytokines. In addition, ceramide further induces alveolar epithelial permeability. Short-hairpin RNA silencing of inflammasome components abrogated ceramide-induced secretion of proinflammatory cytokines in vitro. Inflammasome silencing abolishes ceramide-induced alveolar epithelial permeability in AT-II. Collectively, our results demonstrate for the first time that ceramide-induced secretion of proinflammatory cytokines and alveolar epithelial permeability occurs though inflammasome activation.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Ceramidas/administração & dosagem , Citocinas/genética , Inflamação/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Células Cultivadas , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Células Epiteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hiperóxia/induzido quimicamente , Inflamação/genética , Macrófagos Alveolares/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Oxigênio/administração & dosagem , Permeabilidade/efeitos dos fármacos , RNA Interferente Pequeno/genética , Migração Transendotelial e Transepitelial/efeitos dos fármacos , Migração Transendotelial e Transepitelial/fisiologia
11.
Biochem Biophys Res Commun ; 426(2): 203-8, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22940131

RESUMO

Acute lung injury (ALI) is a devastating disease characterized by pulmonary edema. Removal of edema from the air spaces of lung is a critical function of the epithelial sodium channel (ENaC) in ALI. The molecular mechanisms behind resolution of pulmonary edema are incompletely understood. MicroRNA's (miRNA) are crucial gene regulators and are dysregulated in various diseases including ALI. Recent studies suggest that microRNA-16 (miR-16) targets serotonin transporter (SERT) involved in the serotonin (5-HT) transmitter system. Alterations in serotonin levels have been reported in various pulmonary diseases. However, the role of miR-16 on its target SERT, and ENaC, a key ion channel involved in the resolution of pulmonary edema, have not been studied. In the present study, the expression patterns of miR-16, SERT, ENaC and serotonin were investigated in mice exposed to room air and hyperoxia. The effects of miR-16 overexpression on ENaC, SERT, TGF-ß and Nedd4 in human alveolar epithelial cells were analyzed. miR-16 and ENaC were downregulated in mice exposed to hyperoxia. miR-16 downregulation in mouse lung was correlated with an increase in SERT expression and pulmonary edema. Overexpression of miR-16 in human alveolar epithelial cells (A549) suppressed SERT and increased ENaCß levels when compared to control-vector transfected cells. In addition, miR-16 over expression suppressed TGFß release, a critical inhibitor of ENaC. Interestingly Nedd4, a negative regulator of ENaC remained unaltered in miR-16 over expressed A549 cells when compared to controls. Taken together, our data suggests that miR-16 upregulates ENaC, a major sodium channel involved in resolution of pulmonary edema in ALI.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Canais Epiteliais de Sódio/metabolismo , MicroRNAs/metabolismo , Alvéolos Pulmonares/metabolismo , Mucosa Respiratória/metabolismo , Aerobiose , Animais , Linhagem Celular Tumoral , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Canais Epiteliais de Sódio/genética , Humanos , Camundongos , MicroRNAs/genética , Ubiquitina-Proteína Ligases Nedd4 , Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Fator de Crescimento Transformador alfa/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
12.
Cell Biochem Biophys ; 80(2): 295-299, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35179710

RESUMO

Scientists recently made a significant breakthrough in the recognition of pathogens via guanylate binding protein 1 (GBP1). Wandel et al. [1] in Nature Immunology described their findings where GBP1 acts as a pattern recognition receptor that directly connects to lipopolysaccharide (LPS). GBP1 identifies gram-negative bacteria such as the enteric pathogen, Salmonella enterica serovar Typhimurium, that enter the cytoplasm of the host cell. GBP1 then quickly connects to LPS and stimulates the assembly of more GBPs in the order of GBP2, GBP3, and GBP4. Subsequently, inflammatory caspase-4 arrives at the GBP1-4 activation platform. Next, the activated caspase-4 drives the cleavage of Gasdermin D, triggering the release of the pro-inflammatory cytokine, interleukin-18 (IL-18) leading to inflammatory pyroptosis and cell death. Not only do these remarkable results expand our current understanding of GBP1, but they also carry the potential to develop therapeutic targets for inflammasome-mediated human disorders.


Assuntos
Proteínas de Ligação ao GTP , Inflamassomos , Piroptose , Citocinas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Humanos , Inflamassomos/metabolismo , Lipopolissacarídeos
13.
Front Physiol ; 13: 814510, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35431986

RESUMO

Acute Lung Injury (ALI), characterized by bilateral pulmonary infiltrates that restrict gas exchange, leads to respiratory failure. It is caused by an innate immune response with white blood cell infiltration of the lungs, release of cytokines, an increase in reactive oxygen species (ROS), oxidative stress, and changes in mitochondrial function. Mitochondrial alterations, changes in respiration, ATP production and the unbalancing fusion and fission processes are key events in ALI pathogenesis and increase mitophagy. Research indicates that BMI1 (B cell-specific Moloney murine leukemia virus integration site 1), a protein of the Polycomb repressive complex 1, is a cell cycle and survival regulator that plays a role in mitochondrial function. BMI1-silenced cultured lung epithelial cells were exposed to hyperoxia to determine the role of BMI1 in mitochondrial metabolism. Its expression significantly decreases in human lung epithelial cells (H441) following hyperoxic insult, as determined by western blot, Qrt-PCR, and functional analysis. This decrease correlates with an increase in mitophagy proteins, PINK1, Parkin, and DJ1; an increase in the expression of tumor suppressor PTEN; changes in the expression of mitochondrial biomarkers; and decreases in the oxygen consumption rate (OCR) and tricarboxylic acid enzyme activity. Our bioinformatics analysis suggested that the BMI1 multifunctionality is determined by its high level of intrinsic disorder that defines the ability of this protein to bind to numerous cellular partners. These results demonstrate a close relationship between BMI1 expression and mitochondrial health in hyperoxia-induced acute lung injury (HALI) and indicate that BMI1 is a potential therapeutic target to treat ALI and Acute Respiratory Distress Syndrome.

14.
Front Pharmacol ; 13: 762840, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370705

RESUMO

Acute lung injury (ALI) and its severe manifestation, acute respiratory distress syndrome (ARDS), are treated with high concentrations of supplementary oxygen. However, prolonged exposure to high oxygen concentrations stimulates the production of reactive oxygen species (ROS), which damages the mitochondria and accumulates misfolded proteins in the endoplasmic reticulum (ER). The mitochondrial protein A-kinase anchoring protein 1 (Akap1) is critical for mitochondrial homeostasis. It is known that Akap1 deficiency results in heart damage, neuronal development impairment, and mitochondrial malfunction in preclinical studies. Our laboratory recently revealed that deleting Akap1 increases the severity of hyperoxia-induced ALI in mice. To assess the role of Akap1 deletion in ER stress in lung injury, wild-type and Akap1 -/- mice were exposed to hyperoxia for 48 h. This study indicates that Akap1 -/- mice exposed to hyperoxia undergo ER stress, which is associated with an increased expression of BiP, JNK phosphorylation, eIF2α phosphorylation, ER stress-induced cell death, and autophagy. This work demonstrates that deleting Akap1 results in increased ER stress in the lungs of mice and that hyperoxia exacerbates ER stress-related consequences.

15.
Front Pharmacol ; 13: 980723, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263130

RESUMO

Background: Critically ill patients on supplemental oxygen therapy eventually develop acute lung injury (ALI). Reactive oxygen species (ROS) produced during ALI perturbs the mitochondrial dynamics resulting in cellular damage. Genetic deletion of the mitochondrial A-kinase anchoring protein 1 (Akap1) in mice resulted in mitochondrial damage, Endoplasmic reticulum (ER) stress, increased expression of mitophagy proteins and pro-inflammatory cytokines, exacerbating hyperoxia-induced Acute Lung Injury (HALI). Objective: Despite a strong causal link between mitochondrial dysfunction and HALI, the mechanisms governing the disease progression at the transcriptome level is unknown. Methods: In this study, RNA sequencing (RNA-seq) analysis was carried out using the lungs of Akap1 knockout (Akap1 -/-) mice exposed to normoxia or 48 h of hyperoxia followed by quantitative real time PCR and Ingenuity pathway analysis (IPA). Western blot analysis assessed mitochondrial dysfunction, OXPHOS complex (I-V), apoptosis and antioxidant proteins. Mitochondrial enzymatic assays was used to measure the aconitase, fumarase, citrate synthase activities in isolated mitochondria from Akap1 -/- vs. Wt mice exposed to hyperoxia. Results: Transcriptome analysis of Akap1 -/- exposed to hyperoxia reveals increases in transcripts encoding electron transport chain (ETC) and tricarboxylic acid cycle (TCA) proteins. Ingenuity pathway analysis (IPA) shows enrichment of mitochondrial dysfunction and oxidative phosphorylation in Akap1 -/- mice. Loss of AKAP1, coupled with oxidant injury, significantly decreases the activities of TCA enzymes. Mechanistically, a significant loss of dynamin-related protein 1 (Drp1) phosphorylation at the protein kinase A (PKA) site Serine 637 (Ser637), decreases in Akt phosphorylation at Serine 437 (Ser47) and increase in the expression of pro-apoptotic protein Bax indicate mitochondrial dysfunction. Heme oxygenase-1 (HO-1) levels significantly increased in CD68 positive alveolar macrophages in Akap1 -/- lungs, suggesting a strong antioxidant response to hyperoxia. Conclusion: Overall these results suggest that AKAP1 overexpression and modulation of Drp1 phosphorylation at Ser637 is an important therapeutic strategy for acute lung injury.

16.
Front Pharmacol ; 13: 890380, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910393

RESUMO

Rationale: Idiopathic pulmonary fibrosis (IPF) is characterized by mitochondrial dysfunction. However, details about the non-mitochondrial enzymes that sustain the proliferative nature of IPF are unclear. Aconitases are a family of enzymes that sustain metabolism inside and outside mitochondria. It is hypothesized that aconitase 1 (ACO1) plays an important role in the pathogenesis of IPF given that ACO1 represents an important metabolic hub in the cytoplasm. Objectives: To determine if ACO1 expression in IPF lungs shows specific patterns that may be important in the pathogenesis of IPF. To determine the similarities and differences in ACO1 expression in IPF, bleomycin-treated, and aging lungs. Methods: ACO1 expression in IPF lungs were characterized and compared to non-IPF controls by western blotting, immunostaining, and enzymatic activity assay. ACO1-expressing cell types were identified by multicolor immunostaining. Using similar methods, the expression profiles of ACO1 in IPF lungs versus bleomycin-treated and aged mice were investigated. Measurements and main results: Lower lobes of IPF lungs, unlike non-IPF controls, exhibit significantly high levels of ACO1. Most of the signals colocalize with von Willebrand factor (vWF), a lineage marker for vascular endothelial cells. Bleomycin-treated lungs also show high ACO1 expressions. However, most of the signals colocalize with E-cadherin and/or prosurfactant protein C, representative epithelial cell markers, in remodeled areas. Conclusions: A characteristic ACO1 expression profile observed in IPF vasculatures may be a promising diagnostic target. It also may give clues as to how de novo angiogenesis contributes to the irreversible nature of IPF.

17.
Bioorg Med Chem Lett ; 21(9): 2659-64, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21273068

RESUMO

Through Hsp90-dependent firefly luciferase refolding and Hsp90-dependent heme-regulated eIF2α kinase (HRI) activation assays, silybin was identified as a novel Hsp90 inhibitor. Subsequently, a library of silybin analogues was designed, synthesized and evaluated. Initial SAR studies identified the essential, non-essential and detrimental functionalities on silybin that contribute to Hsp90 inhibition.


Assuntos
Desenho de Fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Silimarina/química , Silimarina/farmacologia , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Silibina , Silimarina/síntese química , Relação Estrutura-Atividade
18.
Front Pharmacol ; 11: 597942, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33597876

RESUMO

Acute lung injury (ALI), a milder form of acute respiratory distress syndrome (ARDS), is a leading cause of mortality in older adults with an increasing prevalence. Oxygen therapy, is a common treatment for ALI, involving exposure to a high concentration of oxygen. Unfortunately, hyperoxia induces the formation of reactive oxygen species which can cause an increase in 4-HNE (4-hydroxy 2 nonenal), a toxic byproduct of lipid peroxidation. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) serves as an endogenous shield against oxidative stress-mediated damage by clearing 4-HNE. Alda-1 [(N-(1, 3 benzodioxol-5-ylmethyl)-2, 6- dichloro-benzamide)], a small molecular activator of ALDH2, protects against reactive oxygen species-mediated oxidative stress by promoting ALDH2 activity. As a result, Alda-1 shields against ischemic reperfusion injury, heart failure, stroke, and myocardial infarction. However, the mechanisms of Alda-1 in hyperoxia-induced ALI remains unclear. C57BL/6 mice implanted with Alzet pumps received Alda-1 in a sustained fashion while being exposed to hyperoxia for 48 h. The mice displayed suppressed immune cell infiltration, decreased protein leakage and alveolar permeability compared to controls. Mechanistic analysis shows that mice pretreated with Alda-1 also experience decreased oxidative stress and enhanced levels of p-Akt and mTOR pathway associated proteins. These results show that continuous delivery of Alda-1 protects against hyperoxia-induced lung injury in mice.

19.
Aging (Albany NY) ; 11(12): 3909-3918, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31209184

RESUMO

Acute lung injury (ALI) is a major cause of morbidity and mortality worldwide, especially in aged populations. Mitochondrial damage is one of the key features of ALI. Hyperoxia-induced lung injury model in mice has been widely used for ALI study because it features many ALI phenotypes including, but not limited to, mitochondrial and vascular endothelial cell damage. Recently, accumulating evidence has shown that mitochondrial aldehyde dehydrogenase 2 (ALDH2) has a protective effect against oxidative stress mediated cell damage in epithelial cells. However, it is not known whether ALDH2 protects against oxidative stress in vascular endothelial cells. In this current study, we attempted to find the capacity of Alda-1 [(N-(1,3benzodioxol-5-ylmethyl)-2,6- dichloro-benzamide), an ALDH2 activator] to protect against oxidative stress in human microvascular endothelial cells (HMVEC). HMVEC pretreated with Alda-1 prior to hyperoxic exposure vs non-treated controls showed i) lower 4-hydroxynonenal (4-HNE) levels, ii) significantly decreased expressions of Bax and Cytochrome C, iii) partially restored activity and expression of ALDH2 and iv) significantly improved mitochondrial membrane potential. These results suggest that ALDH2 protein in lung vascular endothelial cells is a promising therapeutic target for the treatment of ALI and that Alda-1 is a potential treatment option.


Assuntos
Benzamidas/farmacologia , Benzodioxóis/farmacologia , Células Endoteliais/efeitos dos fármacos , Hiperóxia/fisiopatologia , Mitocôndrias/efeitos dos fármacos , Oxigênio/efeitos adversos , Lesão Pulmonar Aguda , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Microvasos , Estresse Oxidativo/efeitos dos fármacos
20.
Aging (Albany NY) ; 11(1): 209-229, 2019 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-30636723

RESUMO

Atp8b1 (ATPase, aminophospholipid transporter, class I, type 8B, member 1) is a cardiolipin transporter in the apical membrane of lung epithelial cells. While the role of Atp8b1 in pneumonia-induced acute lung injury (ALI) has been well studied, its potential role in oxidative stress-induced ALI is poorly understood. We herein show that Atp8b1G308V/G308V mice under hyperoxic conditions display exacerbated cell apoptosis at alveolar epithelium and aberrant proliferation of club cells at bronchiolar epithelium. This hyperoxia-induced ambivalent response in Atp8b1G308V/G308V lungs was followed by patchy distribution of non-uniform interstitial fibrosis at late recovery phase under normoxia. Since this club cell abnormality is commonly observed between Atp8b1G308V/G308V lungs under hyperoxic conditions and IPF lungs, we characterized this mouse fibrosis model focusing on club cells. Intriguingly, subcellular morphological analysis of IPF lungs, using transmission electron microscopy (TEM), revealed that metaplastic bronchiolar epithelial cells in fibrotic lesions and deformed type II alveolar epithelial cells (AECs) in alveoli with mild fibrosis, have common morphological features including cytoplasmic vacuolation and dysmorphic lamellar bodies. In conclusion, the combination of Atp8b1 mutation and hyperoxic insult serves as a novel platform to study unfocused role of club cells in IPF.


Assuntos
Adenosina Trifosfatases/metabolismo , Oxigênio/toxicidade , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fibrose Pulmonar/etiologia , Adenosina Trifosfatases/genética , Animais , Morte Celular , Proliferação de Células , Células Epiteliais/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Mutação , Estresse Oxidativo , Proteínas de Transferência de Fosfolipídeos/genética , Alvéolos Pulmonares/citologia , Uteroglobina/genética , Uteroglobina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA