Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Cell Biochem ; 124(5): 716-730, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36946523

RESUMO

Sertoli cells (SCs) provide an adequate environment for germ cell development. SCs possess unique features that meet germ cells' metabolic demands: they produce lactate from glucose, which is delivered as energy substrate to germ cells. SCs store fatty acids (FAs) as triacylglycerols (TAGs) in lipid droplets (LDs) and can oxidize FAs to sustain their own energetic demands. They also produce ketone bodies from FAs. It has been shown that exposure of SCs to metabolic stresses, such as glucose deprivation, triggers specific adaptive responses that sustain cell survival and preserve lactate supply to germ cells. The aim of the present study was to investigate whether there are modifications in rat SCs lipid metabolism, including LD content, FA oxidation, and ketone bodies production, as part of their adaptive response to glucose deprivation. The present study was performed in 20-day-old rat SCs cultures. We determined LD content by Oil Red O staining, FA oxidation by measuring the release of 3 H2 O from [3 H] palmitate, TAGs and 3-hydroxybutyrate levels by spectrophotometric methods, and mRNA levels by RT-qPCR. Results show that the absence of glucose in SC culture medium entails: (1) a decrease in LD content and TAGs levels that is accompanied by decreased perilipin 1 mRNA levels, (2) an increase in FA oxidation that is in part mediated by AMP kinase (AMPK) activation and (3) a decrease in 3-hydroxybutyrate production. Additionally, we studied whether sestrins (SESN1, 2 and 3), proteins involved in the cellular response to stress, are regulated in glucose deprivation conditions. We show that there is an increase in SESN2 mRNA levels in deprived conditions. In conclusion, glucose deprivation affects SC lipid metabolism promoting FA mobilization from LDs to be used as energy source.


Assuntos
Glucose , Células de Sertoli , Masculino , Ratos , Animais , Células de Sertoli/metabolismo , Glucose/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Adenilato Quinase , Metabolismo dos Lipídeos/genética , Ácido 3-Hidroxibutírico/metabolismo , Ácidos Graxos/metabolismo , RNA Mensageiro/genética , Corpos Cetônicos/metabolismo , Lactatos
2.
Am J Physiol Endocrinol Metab ; 302(8): E914-23, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22275758

RESUMO

The final number of Sertoli cells reached during the proliferative periods determines sperm production capacity in adulthood. It is well known that FSH is the major Sertoli cell mitogen; however, little is known about the signal transduction pathways that regulate the proliferation of Sertoli cells. The hypothesis of this investigation was that FSH regulates proliferation through a PI3K/Akt/mTORC1 pathway, and additionally, AMPK-dependent mechanisms counteract FSH proliferative effects. The present study was performed in 8-day-old rat Sertoli cell cultures. The results presented herein show that FSH, in addition to increasing p-Akt, p-mTOR, and p-p70S6K levels, increases p-PRAS40 levels, probably contributing to improving mTORC1 signaling. Furthermore, the decrease in FSH-stimulated p-Akt, p-mTOR, p-p70S6K, and p-PRAS40 levels in the presence of wortmannin emphasizes the participation of PI3K in FSH signaling. Additionally, the inhibition of FSH-stimulated Sertoli cell proliferation by the effect of wortmannin and rapamycin point to the relevance of the PI3K/Akt/mTORC1 signaling pathway in the mitotic activity of FSH. On the other hand, by activating AMPK, several interesting observations were made. Activation of AMPK produced an increase in Raptor phosphorylation, a decrease in p70S6K phosphorylation, and a decrease in FSH-stimulated Sertoli cell proliferation. The decrease in FSH-stimulated cell proliferation was accompanied by an increased expression of the cyclin-dependent kinase inhibitors (CDKIs) p19INK4d, p21Cip1, and p27Kip1. In summary, it is concluded that FSH regulates Sertoli cell proliferation with the participation of a PI3K/Akt/mTORC1 pathway and that AMPK activation may be involved in the detention of proliferation by, at least in part, a decrease in mTORC1 signaling and an increase in CDKI expression.


Assuntos
Proliferação de Células , Hormônio Foliculoestimulante/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células de Sertoli/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Inibidores de Fosfoinositídeo-3 Quinase , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Proteína Regulatória Associada a mTOR , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Células de Sertoli/citologia , Células de Sertoli/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sus scrofa , Serina-Treonina Quinases TOR/antagonistas & inibidores
3.
Am J Physiol Endocrinol Metab ; 297(4): E907-14, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19638510

RESUMO

Sertoli cells provide the physical support and the necessary environment for germ cell development. Among the products secreted by Sertoli cells, lactate, the preferred energy substrate for spermatocytes and spermatids, is present. Considering the essential role of lactate on germ cell metabolism, it is supposed that Sertoli cells must ensure its production even in adverse conditions, such as those that would result from a decrease in glucose levels in the extracellular milieu. The aim of the present study was to investigate 1) a possible effect of glucose deprivation on glucose uptake and on the expression of glucose transporters in rat Sertoli cells and 2) the participation of different signal transduction pathways in the above-mentioned regulation. Results obtained show that decreasing glucose levels in Sertoli cell culture medium provokes 1) an increase in glucose uptake accompanied by only a slight decrease in lactate production, 2) an increase in GLUT1 and a decrease in GLUT3 expression, and 3) an activation of AMP-activated protein kinase (AMPK)-, phosphatidylinositol 3-kinase (PI3K)/PKB-, and p38 MAPK-dependent pathways. Additionally, by using specific inhibitors of these pathways, a possible participation of AMPK- and p38MAPK-dependent pathways in the regulation of glucose uptake and GLUT1 expression is shown. These results suggest that Sertoli cells adapt to conditions of glucose deprivation to ensure an adequate lactate concentration in the microenvironment where germ cell development occurs.


Assuntos
Glucose/deficiência , Células de Sertoli/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Northern Blotting , Western Blotting , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Desoxiglucose/metabolismo , Espaço Extracelular/metabolismo , Glucose/metabolismo , Proteínas Facilitadoras de Transporte de Glucose/biossíntese , Transportador de Glucose Tipo 1/biossíntese , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 3/biossíntese , Transportador de Glucose Tipo 3/metabolismo , Ácido Láctico/metabolismo , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Ratos , Ratos Sprague-Dawley , Células de Sertoli/metabolismo , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Biochem J ; 416(1): 1-14, 2008 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-18774945

RESUMO

LKB1 was discovered as a tumour suppressor mutated in Peutz-Jeghers syndrome, and is a gene involved in cell polarity as well as an upstream protein kinase for members of the AMP-activated protein kinase family. We report that mammals express two splice variants caused by alternate usage of 3'-exons. LKB1(L) is the previously described form, while LKB1(S) is a novel form in which the last 63 residues are replaced by a unique 39-residue sequence lacking known phosphorylation (Ser(431)) and farnesylation (Cys(433)) sites. Both isoforms are widely expressed in rodent and human tissues, although LKB1(S) is particularly abundant in haploid spermatids in the testis. Male mice in which expression of Lkb1(S) is knocked out are sterile, with the number of mature spermatozoa in the epididymis being dramatically reduced, and those spermatozoa that are produced have heads with an abnormal morphology and are non-motile. These results identify a previously undetected variant of LKB1, and suggest that it has a crucial role in spermiogenesis and male fertility.


Assuntos
Proteínas Serina-Treonina Quinases/genética , Espermatogênese/fisiologia , Quinases Proteína-Quinases Ativadas por AMP , Proteínas Quinases Ativadas por AMP , Sequência de Aminoácidos , Animais , Western Blotting , Ativação Enzimática , Células HeLa , Humanos , Infertilidade Masculina/genética , Isoenzimas/genética , Masculino , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/isolamento & purificação , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Alinhamento de Sequência , Espermátides/enzimologia , Testículo/ultraestrutura
5.
Methods Mol Biol ; 1748: 129-155, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29453570

RESUMO

Sertoli cells play a central role in spermatogenesis. They maintain the blood-testis barrier, an essential feature of seminiferous tubules which creates the proper environment for the occurrence of the spermatogenesis. However, this confinement renders germ cells almost exclusively dependent on Sertoli cells' nursing function and support. Throughout spermatogenesis, differentiating sperm cells become more specialized, and their biochemical machinery is insufficient to meet their metabolic demands. Although the needs are not the same at all differentiation stages, Sertoli cells are able to satisfy their needs. In order to maintain the seminiferous tubule energetic homeostasis, Sertoli cells react in response to several metabolic stimuli, through signaling cascades. The AMP-activated kinase, sensitive to the global energetic status; the hypoxia-inducible factors, sensitive to oxygen concentration; and the peroxisome proliferator-activated receptors, sensitive to fatty acid availability, are pathways already described in Sertoli cells. These cells' metabolism also reflects the whole-body metabolic dynamics. Metabolic diseases, including obesity and type II diabetes mellitus, induce changes that, both directly and indirectly, affect Sertoli cell function and, ultimately, (dys)function in male reproductive health. Insulin resistance, increased estrogen synthesis, vascular disease, and pubic fat accumulation are examples of metabolic-related conditions that affect male fertility potential. On the other hand, malnutrition can also induce negative effects on male sexual function. In this chapter, we review the molecular mechanisms associated with the nutritional state and male sexual (dys)function and the central role played by the Sertoli cells.


Assuntos
Apoio Nutricional , Células de Sertoli/metabolismo , Transdução de Sinais , Espermatogênese , Diferenciação Celular , Células Cultivadas , Humanos , Masculino , Células de Sertoli/citologia
6.
Methods Mol Biol ; 1748: 157-171, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29453571

RESUMO

Nuclear magnetic resonance (NMR)-based metabolomics is widely used in the research of metabolic conditions of complex biological systems under various conditions, and its use has been found in the field of male fertility. Here we describe the implementation of total and targeted NMR-based metabolomics in the research on Sertoli cell metabolism. Main principles and techniques of cell medium, cellular extracts, and intact cells are explained, as well as some classical experiments that can give complementary information on the Sertoli cell metabolism.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Metabolômica , Células de Sertoli/metabolismo , Células Cultivadas , Humanos , Masculino , Células de Sertoli/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA