Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Genet Epidemiol ; 43(2): 180-188, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30474154

RESUMO

Recent studies have examined the genetic correlations of single-nucleotide polymorphism (SNP) effect sizes across pairs of populations to better understand the genetic architectures of complex traits. These studies have estimated ρ g , the cross-population correlation of joint-fit effect sizes at genotyped SNPs. However, the value of ρ g depends both on the cross-population correlation of true causal effect sizes ( ρ b ) and on the similarity in linkage disequilibrium (LD) patterns in the two populations, which drive tagging effects. Here, we derive the value of the ratio ρ g / ρ b as a function of LD in each population. By applying existing methods to obtain estimates of ρ g , we can use this ratio to estimate ρ b . Our estimates of ρ b were equal to 0.55 ( SE = 0.14) between Europeans and East Asians averaged across nine traits in the Genetic Epidemiology Research on Adult Health and Aging data set, 0.54 ( SE = 0.18) between Europeans and South Asians averaged across 13 traits in the UK Biobank data set, and 0.48 ( SE = 0.06) and 0.65 ( SE = 0.09) between Europeans and East Asians in summary statistic data sets for type 2 diabetes and rheumatoid arthritis, respectively. These results implicate substantially different causal genetic architectures across continental populations.


Assuntos
Genética Populacional , Adulto , Envelhecimento/genética , Artrite Reumatoide/genética , Bancos de Espécimes Biológicos , Bases de Dados Genéticas , Diabetes Mellitus Tipo 2/genética , Genótipo , Humanos , Fenótipo , Característica Quantitativa Herdável , Reino Unido
2.
Am J Hum Genet ; 99(5): 1130-1139, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27773431

RESUMO

Analyzing genetic differences between closely related populations can be a powerful way to detect recent adaptation. The very large sample size of the UK Biobank is ideal for using population differentiation to detect selection and enables an analysis of the UK population structure at fine resolution. In this study, analyses of 113,851 UK Biobank samples showed that population structure in the UK is dominated by five principal components (PCs) spanning six clusters: Northern Ireland, Scotland, northern England, southern England, and two Welsh clusters. Analyses of ancient Eurasians revealed that populations in the northern UK have higher levels of Steppe ancestry and that UK population structure cannot be explained as a simple mixture of Celts and Saxons. A scan for unusual population differentiation along the top PCs identified a genome-wide-significant signal of selection at the coding variant rs601338 in FUT2 (p = 9.16 × 10-9). In addition, by combining evidence of unusual differentiation within the UK with evidence from ancient Eurasians, we identified genome-wide-significant (p = 5 × 10-8) signals of recent selection at two additional loci: CYP1A2-CSK and F12. We detected strong associations between diastolic blood pressure in the UK Biobank and both the variants with selection signals at CYP1A2-CSK (p = 1.10 × 10-19) and the variants with ancient Eurasian selection signals at the ATXN2-SH2B3 locus (p = 8.00 × 10-33), implicating recent adaptation related to blood pressure.


Assuntos
Bancos de Espécimes Biológicos/organização & administração , Pressão Sanguínea/genética , Adaptação Fisiológica/genética , Loci Gênicos , Genética Populacional , Genoma Humano , Humanos , Família Multigênica , Filogeografia , Seleção Genética , Reino Unido , População Branca/genética
3.
Am J Hum Genet ; 98(3): 456-472, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26924531

RESUMO

Searching for genetic variants with unusual differentiation between subpopulations is an established approach for identifying signals of natural selection. However, existing methods generally require discrete subpopulations. We introduce a method that infers selection using principal components (PCs) by identifying variants whose differentiation along top PCs is significantly greater than the null distribution of genetic drift. To enable the application of this method to large datasets, we developed the FastPCA software, which employs recent advances in random matrix theory to accurately approximate top PCs while reducing time and memory cost from quadratic to linear in the number of individuals, a computational improvement of many orders of magnitude. We apply FastPCA to a cohort of 54,734 European Americans, identifying 5 distinct subpopulations spanning the top 4 PCs. Using the PC-based test for natural selection, we replicate previously known selected loci and identify three new genome-wide significant signals of selection, including selection in Europeans at ADH1B. The coding variant rs1229984(∗)T has previously been associated to a decreased risk of alcoholism and shown to be under selection in East Asians; we show that it is a rare example of independent evolution on two continents. We also detect selection signals at IGFBP3 and IGH, which have also previously been associated to human disease.


Assuntos
Álcool Desidrogenase/genética , Povo Asiático/genética , Evolução Molecular , Análise de Componente Principal , População Branca/genética , Biologia Computacional , Bases de Dados Genéticas , Europa (Continente) , Ásia Oriental , Loci Gênicos , Genética Populacional , Estudo de Associação Genômica Ampla , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Modelos Genéticos , Filogenia , Polimorfismo de Nucleotídeo Único , Seleção Genética
5.
Mol Biol Evol ; 29(11): 3427-39, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22734050

RESUMO

Malaria is a deadly disease that causes nearly one million deaths each year. To develop methods to control and eradicate malaria, it is important to understand the genetic basis of Plasmodium falciparum adaptations to antimalarial treatments and the human immune system while taking into account its demographic history. To study the demographic history and identify genes under selection more efficiently, we sequenced the complete genomes of 25 culture-adapted P. falciparum isolates from three sites in Senegal. We show that there is no significant population structure among these Senegal sampling sites. By fitting demographic models to the synonymous allele-frequency spectrum, we also estimated a major 60-fold population expansion of this parasite population ∼20,000-40,000 years ago. Using inferred demographic history as a null model for coalescent simulation, we identified candidate genes under selection, including genes identified before, such as pfcrt and PfAMA1, as well as new candidate genes. Interestingly, we also found selection against G/C to A/T changes that offsets the large mutational bias toward A/T, and two unusual patterns: similar synonymous and nonsynonymous allele-frequency spectra, and 18% of genes having a nonsynonymous-to-synonymous polymorphism ratio >1.


Assuntos
Genoma de Protozoário/genética , Malária Falciparum/parasitologia , Parasitos/genética , Plasmodium falciparum/genética , Análise de Sequência de DNA , Animais , Composição de Bases/genética , Demografia , Frequência do Gene/genética , Genes de Protozoários/genética , Genética Populacional , Humanos , Desequilíbrio de Ligação/genética , Malária Falciparum/genética , Modelos Genéticos , Nucleotídeos/genética , Parasitos/crescimento & desenvolvimento , Plasmodium falciparum/crescimento & desenvolvimento , Polimorfismo Genético , Seleção Genética , Senegal
6.
Clin Cancer Res ; 27(12): 3329-3338, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33820779

RESUMO

PURPOSE: This open-label, multicenter, phase IB/II study evaluated sapanisertib, a dual inhibitor of mTOR kinase complexes 1/2, plus exemestane or fulvestrant in postmenopausal women with hormone receptor-positive (HR+)/HER2-negative (HER2-) advanced/metastatic breast cancer. PATIENTS AND METHODS: Eligible patients had previously progressed on everolimus with exemestane/fulvestrant and received ≤3 (phase IB) or ≤1 (phase II) prior chemotherapy regimens. Patients received sapanisertib 3 to 5 mg every day (phase IB), or 4 mg every day (phase II) with exemestane 25 mg every day or fulvestrant 500 mg monthly in 28-day cycles. Phase II enrolled parallel cohorts based on prior response to everolimus. The primary objective of phase II was to evaluate antitumor activity by clinical benefit rate at 16 weeks (CBR-16). RESULTS: Overall, 118 patients enrolled in phase IB (n = 24) and II (n = 94). Five patients in phase IB experienced dose-limiting toxicities, at sapanisertib doses of 5 mg every day (n = 4) and 4 mg every day (n = 1); sapanisertib 4 mg every day was the MTD in combination with exemestane or fulvestrant. In phase II, in everolimus-sensitive versus everolimus-resistant cohorts, CBR-16 was 45% versus 23%, and overall response rate was 8% versus 2%, respectively. The most common adverse events were nausea (52%), fatigue (47%), diarrhea (37%), and hyperglycemia (33%); rash occurred in 17% of patients. Molecular analysis suggested positive association between AKT1 mutation status and best treatment response (complete + partial response; P = 0.0262). CONCLUSIONS: Sapanisertib plus exemestane or fulvestrant was well tolerated and exhibited clinical benefit in postmenopausal women with pretreated everolimus-sensitive or everolimus-resistant breast cancer.


Assuntos
Neoplasias da Mama , Androstadienos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Fulvestranto , Humanos , Pirazóis , Pirimidinas , Receptor ErbB-2/genética , Receptor ErbB-2/uso terapêutico , Receptores de Estrogênio , Receptores de Progesterona
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA