Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892176

RESUMO

Currently, an important group of biomaterials used in the research in the field of tissue engineering is thermosensitive chitosan hydrogels. Their main advantage is the possibility of introducing their precursors (sols) into the implantation site using a minimally invasive method-by injection. In this publication, the results of studies on the new chitosan structures in the form of thermosensitive hydrogels containing graphene oxide as a nanofiller are presented. These systems were prepared from chitosan lactate and chitosan chloride solutions with the use of a salt of pyrimidine nucleotide-uridine 5'-monophosphate disodium salt-as the cross-linking agent. In order to perform the characterization of the developed hydrogels, the sol-gel transition temperature of the colloidal systems was first determined based on rheological measurements. The hydrogels were also analyzed using FTIR spectroscopy and SEM. Biological studies assessed the cytotoxicity (resazurin assay) and genotoxicity (alkaline version of the comet assay) of the nanocomposite chitosan hydrogels against normal human BJ fibroblasts. The conducted research allowed us to conclude that the developed hydrogels containing graphene oxide are an attractive material for potential use as scaffolds for the regeneration of damaged tissues.


Assuntos
Quitosana , Grafite , Hidrogéis , Nanocompostos , Quitosana/química , Hidrogéis/química , Nanocompostos/química , Humanos , Grafite/química , Fibroblastos/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Temperatura , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Engenharia Tecidual/métodos , Reologia
2.
Int J Mol Sci ; 25(2)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38255802

RESUMO

The term glaucoma encompasses various neurodegenerative eye disorders, among which the most common is primary open-angle glaucoma (POAG). Recently, the essential role of human retinal astrocytes (HRA) in glaucoma progression has been placed in the spotlight. It has been found that placing the endoplasmic reticulum (ER) under stress and activating PERK leads to apoptosis of HRA cells, which inhibits their neuroprotective effect in the course of glaucoma. Therefore, the aim of the present study was to evaluate the effectiveness of the small-molecule PERK inhibitor LDN-0060609 in countering ER stress conditions induced in HRA cells in vitro. The activity of LDN-0060609 was studied in terms of protein and mRNA expression, cytotoxicity, genotoxicity, caspase-3 level and cell cycle progression. LDN-0060609 at 25 µM proved to be a potent inhibitor of the major PERK substrate, p-eIF2α (49% inhibition). The compound markedly decreased the expression of pro-apoptotic ER stress-related genes (ATF4, DDIT3, BAX and Bcl-2). Treatment with LDN-0060609 significantly increased cell viability, decreased genotoxicity and caspase-3 levels, and restored cell cycle distribution in HRA cells with activated ER stress conditions. These findings indicate that the small-molecule PERK inhibitor LDN-0060609 can potentially be developed into a novel anti-glaucoma agent.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Humanos , Caspase 3 , Astrócitos , Glaucoma de Ângulo Aberto/tratamento farmacológico , Projetos de Pesquisa
3.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473866

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation affecting up to 2.0% of adults around the world. The molecular background of RA has not yet been fully elucidated, but RA is classified as a disease in which the genetic background is one of the most significant risk factors. One hallmark of RA is impaired DNA repair observed in patient-derived peripheral blood mononuclear cells (PBMCs). The aim of this study was to correlate the phenotype defined as the efficiency of DNA double-strand break (DSB) repair with the genotype limited to a single-nucleotide polymorphism (SNP) of DSB repair genes. We also analyzed the expression level of key DSB repair genes. The study population contained 45 RA patients and 45 healthy controls. We used a comet assay to study DSB repair after in vitro exposure to bleomycin in PBMCs from patients with rheumatoid arthritis. TaqMan SNP Genotyping Assays were used to determine the distribution of SNPs and the Taq Man gene expression assay was used to assess the RNA expression of DSB repair-related genes. PBMCs from patients with RA had significantly lower bleomycin-induced DNA lesion repair efficiency and we identified more subjects with inefficient DNA repair in RA compared with the control (84.5% vs. 24.4%; OR 41.4, 95% CI, 4.8-355.01). Furthermore, SNPs located within the RAD50 gene (rs1801321 and rs1801320) increased the OR to 53.5 (95% CI, 4.7-613.21) while rs963917 and rs3784099 (RAD51B) to 73.4 (95% CI, 5.3-1011.05). These results were confirmed by decision tree (DT) analysis (accuracy 0.84; precision 0.87, and specificity 0.86). We also found elevated expression of RAD51B, BRCA1, and BRCA2 in PBMCs isolated from RA patients. The findings indicated that impaired DSB repair in RA may be related to genetic variations in DSB repair genes as well as their expression levels. However, the mechanism of this relation, and whether it is direct or indirect, needs to be elucidated.


Assuntos
Artrite Reumatoide , Leucócitos Mononucleares , Masculino , Adulto , Humanos , Leucócitos Mononucleares/patologia , Genótipo , Reparo do DNA , Artrite Reumatoide/patologia , Polimorfismo de Nucleotídeo Único , DNA , Bleomicina , Predisposição Genética para Doença
4.
J Enzyme Inhib Med Chem ; 38(1): 2158822, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36629422

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative brain disease. Thus, drugs including donepezil, rivastigmine, and galantamine are not entirely effective in the treatment of this multifactorial disease. The present study evaluates eight derivatives (3a-3h) as candidates with stronger anti-AD potential but with less side effects. Reactive oxygen species (ROS) assays were used to assess oxidative stress which involve in the neurodegeneration. The neuroprotective properties of 3e against oxidative stress were done in three experiments using MTT test. The anti-AD potential was determined based on their anticholinesterase inhibition ability, determined using Ellman's method, Aß aggregation potential according to thioflavin (Th) fluorescence assay, and their antioxidative and anti-inflammatory activities. Compound 3e exhibited moderate cholinesterase inhibition activity (AChE, IC50 = 0.131 µM; BuChE, IC50 = 0.116 µM; SI = 1.13), significant inhibition of Aß(1-42) aggregation (55.7%, at 5 µM) and acceptable neuroprotective activity. Extensive analysis of in vitro and in vivo assays indicates that new cyclopentaquinoline derivatives offer promise as candidates for new anti-AD drugs.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Humanos , Doença de Alzheimer/tratamento farmacológico , Neuroproteção , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Estresse Oxidativo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
5.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108746

RESUMO

Single nucleotide polymorphisms in non-HLA genes are involved in the development of rheumatoid arthritis (RA). SNPS in genes: PADI4 (rs2240340), STAT4 (rs7574865), CD40 (rs4810485), PTPN22 (rs2476601), and TRAF1 (rs3761847) have been described as risk factors for the development of autoimmune diseases, including RA. This study aimed to assess the prevalence of polymorphisms of these genes in the Polish population of patients with rheumatoid arthritis as compared to healthy controls. 324 subjects were included in the study: 153 healthy subjects and 181 patients from the Department of Rheumatology, Medical University of Lodz who fulfilled the criteria of rheumatoid arthritis diagnosis. Genotypes were determined by Taqman SNP Genotyping Assay. rs2476601 (G/A, OR = 2.16, CI = 1.27-3.66; A/A, OR = 10.35, CI = 1.27-84.21), rs2240340 (C/T, OR = 4.35, CI = 2.55-7.42; T/T, OR = 2.80, CI = 1.43-4.10) and rs7574865 (G/T, OR = 1.97, CI = 1.21-3.21; T/T, OR = 3.33, CI = 1.01-11.02) were associated with RA in the Polish population. Rs4810485 was also associated with RA, however after Bonferroni's correction was statistically insignificant. We also found an association between minor alleles of rs2476601, rs2240340, and rs7574865 and RA (OR = 2.32, CI = 1.47-3.66; OR = 2.335, CI = 1.64-3.31; OR = 1.88, CI = 1.27-2.79, respectively). Multilocus analysis revealed an association between CGGGT and rare (below 0.02 frequency) haplotypes (OR = 12.28, CI = 2.65-56.91; OR = 3.23, CI = 1.63-6.39). In the Polish population, polymorphisms of the PADI4, PTPN22, and STAT4 genes have been detected, which are also known risk factors for RA in various other populations.


Assuntos
Artrite Reumatoide , Polimorfismo de Nucleotídeo Único , Humanos , Fator 1 Associado a Receptor de TNF/genética , Polônia/epidemiologia , Predisposição Genética para Doença , Artrite Reumatoide/epidemiologia , Artrite Reumatoide/genética , Genótipo , Alelos , Estudos de Casos e Controles , Frequência do Gene , Proteína Tirosina Fosfatase não Receptora Tipo 22/genética , Fator de Transcrição STAT4/genética
6.
Int J Mol Sci ; 25(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38203531

RESUMO

Parkinson's disease (PD) is a complex neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra and the widespread accumulation of alpha-synuclein (αSyn) protein aggregates. αSyn aggregation disrupts critical cellular processes, including synaptic function, mitochondrial integrity, and proteostasis, which culminate in neuronal cell death. Importantly, αSyn pathology extends beyond neurons-it also encompasses spreading throughout the neuronal environment and internalization by microglia and astrocytes. Once internalized, glia can act as neuroprotective scavengers, which limit the spread of αSyn. However, they can also become reactive, thereby contributing to neuroinflammation and the progression of PD. Recent advances in αSyn research have enabled the molecular diagnosis of PD and accelerated the development of targeted therapies. Nevertheless, despite more than two decades of research, the cellular function, aggregation mechanisms, and induction of cellular damage by αSyn remain incompletely understood. Unraveling the interplay between αSyn, neurons, and glia may provide insights into disease initiation and progression, which may bring us closer to exploring new effective therapeutic strategies. Herein, we provide an overview of recent studies emphasizing the multifaceted nature of αSyn and its impact on both neuron and glial cell damage.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , alfa-Sinucleína , Neurônios Dopaminérgicos , Neuroglia
7.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835215

RESUMO

Rheumatoid arthritis (RA) is a chronic, multifactorial autoimmune disease characterized by chronic arthritis, a tendency to develop joint deformities, and involvement of extra-articular tissues. The risk of malignant neoplasms among patients with RA is the subject of ongoing research due to the autoimmune pathogenesis that underlies RA, the common etiology of rheumatic disease and malignancies, and the use of immunomodulatory therapy, which can alter immune system function and thus increase the risk of malignant neoplasms. This risk can also be increased by impaired DNA repair efficiency in individuals with RA, as reported in our recent study. Impaired DNA repair may reflect the variability in the genes that encode DNA repair proteins. The aim of our study was to evaluate the genetic variation in RA within the genes of the DNA damage repair system through base excision repair (BER), nucleotide excision repair (NER), and the double strand break repair system by homologous recombination (HR) and non-homologous end joining (NHEJ). We genotyped a total of 28 polymorphisms in 19 genes encoding DNA repair-related proteins in 100 age- and sex-matched RA patients and healthy subjects from Central Europe (Poland). Polymorphism genotypes were determined using the Taq-man SNP Genotyping Assay. We found an association between the RA occurrence and rs25487/XRCC1, rs7180135/RAD51, rs1801321/RAD51, rs963917/RAD51B, rs963918/RAD51B, rs2735383/NBS1, rs132774/XRCC6, rs207906/XRCC5, and rs861539/XRCC3 polymorphisms. Our results suggest that polymorphisms of DNA damage repair genes may play a role in RA pathogenesis and may be considered as potential markers of RA.


Assuntos
Artrite Reumatoide , Reparo do DNA , Predisposição Genética para Doença , Humanos , Artrite Reumatoide/genética , Estudos de Casos e Controles , Reparo do DNA/genética , Genótipo , Projetos Piloto , Polimorfismo Genético , Proteína 1 Complementadora Cruzada de Reparo de Raio-X/genética
8.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142498

RESUMO

Argonaute (AGO) proteins, through their key role in the regulation of gene expression, participate in many biological processes, including cell differentiation, proliferation, death and DNA repair. Accurate regulation of gene expression appears to be important for the proper development of complex neural circuits. Loss of AGO proteins is known to lead to early embryonic mortality in mice with various malformations, including anomalies of the central nervous system. Single-nucleotide polymorphisms (SNPs) of AGO genes can lead to deregulation of the processes in which AGO proteins are involved. The contribution of different SNPs in depression has been extensively studied. However, there are hardly any studies on the contribution of AGO genes. The aim of our research was to assess the relationship between the occurrence of depression and the presence of SNPs in genes AGO1 (rs636882) and AGO2 (rs4961280; rs2292779; rs2977490) in a Polish population. One hundred and one subjects in the study group were diagnosed with recurrent depressive disorder by a psychiatrist. The control group comprised 117 healthy subjects. Study participants performed the HDRS (Hamilton Depression Scale) test to confirm or exclude depression and assess severity. The frequency of polymorphic variants of genes AGO1 (rs636882) and AGO2 (rs4961280; rs2292779; rs2977490) was determined using TaqMan SNP genotyping assays and the TaqMan universal PCR master mix, no AmpErase UNG. The rs4961280/AGO2 polymorphism was associated with a decrease in depression occurrence in the codominant (OR = 0.51, p = 0.034), dominant (OR = 0.49, p = 0.01), and overdominant (OR = 0.58, p = 0.049) models. Based on the obtained results, we found that the studied patients demonstrated a lower risk of depression with the presence of the polymorphic variant of the rs4961280/AGO2 gene-genotype C/A and C/A-A/A.


Assuntos
Proteínas Argonautas/genética , Depressão , Fatores de Iniciação em Eucariotos/genética , Alelos , Animais , Estudos de Casos e Controles , Depressão/genética , Humanos , Camundongos , Polônia , Polimorfismo de Nucleotídeo Único
9.
Molecules ; 27(7)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35408669

RESUMO

Eight dipeptides containing antifibrinolytic agents (tranexamic acid, aminocaproic acid, 4-(aminomethyl)benzoic acid, and glycine-natural amino acids) were synthesized in a three-step process with good or very good yields. DMT/NMM/TsO- (4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium toluene-4-sulfonate) was used as a coupling reagent. Hemolysis tests were used to study the effects of the dipeptides on blood components. Blood plasma clotting tests were used to examine their effects on thrombin time (TT), prothrombin time (PT), and the activated partial thromboplastin time (aPTT). The level of hemolysis did not exceed 1%. In clotting tests, TT, PT, and aPTT did not differentiate any of the compounds. The prothrombin times for all amides 1-8 were similar. The obtained results in the presence of amides 1-4 and 8 were slightly lower than for the other compounds and the positive control, and they were similar to the results obtained for TA. In the case of amide 3, a significantly decreased aPTT was observed. The aPTTs observed for plasma treated with amide 3 and TA were comparable. In the case of amide 6 and 8, TT values significantly lower than for the other compounds were found. The clot formation and fibrinolysis (CFF) assay was used to assess the influence of the dipeptides on the blood plasma coagulation cascade and the fibrinolytic efficiency of the blood plasma. In the clot formation and fibrinolysis assay, amides 5 and 7 were among the most active compounds. The cytotoxicity and genotoxicity of the synthesized dipeptides were evaluated on the monocyte/macrophage peripheral blood cell line. The dipeptides did not cause hemolysis at any concentrations. They exhibited no significant cytotoxic effect on SC cells and did not induce significant DNA damage.


Assuntos
Hemostáticos , Amidas/farmacologia , Dipeptídeos/farmacologia , Hemólise , Hemostasia , Humanos , Tempo de Tromboplastina Parcial , Tempo de Protrombina
10.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925820

RESUMO

Primary open-angle glaucoma (POAG) constitutes the most common type of glaucoma. Emerging evidence suggests that Endoplasmic Reticulum (ER) stress and the protein kinase RNA-like endoplasmic reticulum kinase (PERK)-mediated Unfolded Protein Response (UPR) signaling pathway play a key role in POAG pathogenesis. Thus, the main aim of the study was to evaluate the effectiveness of the PERK inhibitor LDN-0060609 in cellular model of glaucoma using primary human trabecular meshwork (HTM) cells. To evaluate the level of the ER stress marker proteins, Western blotting and TaqMan gene expression assay were used. The cytotoxicity was measured by XTT, LDH assays and Giemsa staining, whereas genotoxicity via comet assay. Changes in cell morphology were assessed by phase-contrast microscopy. Analysis of apoptosis was performed by caspase-3 assay and flow cytometry (FC), whereas cell cycle progression by FC. The results obtained have demonstrated that LDN-0060609 triggered a significant decrease of ER stress marker proteins within HTM cells with induced ER stress conditions. Moreover, LDN-0060609 effectively increased viability, reduced DNA damage, increased proliferation, restored normal morphology, reduced apoptosis and restored normal cell cycle distribution of HTM cells with induced ER stress conditions. Thereby, PERK inhibitors, such as LDN-0060609, may provide an innovative, ground-breaking treatment strategy against POAG.


Assuntos
Glaucoma de Ângulo Aberto , Inibidores de Proteínas Quinases/farmacologia , eIF-2 Quinase/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Fator de Iniciação 2 em Eucariotos/metabolismo , Glaucoma de Ângulo Aberto/tratamento farmacológico , Glaucoma de Ângulo Aberto/metabolismo , Humanos , Inibidores de Proteínas Quinases/efeitos adversos , Resposta a Proteínas não Dobradas/efeitos dos fármacos , eIF-2 Quinase/metabolismo
11.
Int J Mol Sci ; 22(24)2021 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-34948383

RESUMO

The aim of the research was to check whether it is possible to use fragments of type IV collagen to obtain, as a result of self-assembling, stable spatial structures that could be used to prepare new materials useful in regenerative medicine. Collagen IV fragments were obtained by using DMT/NMM/TosO- as a coupling reagent. The ability to self-organize and form stable spatial structures was tested by the CD method and microscopic techniques. Biological studies covered: resazurin assay (cytotoxicity assessment) on BJ, BJ-5TA and C2C12 cell lines; an alkaline version of the comet assay (genotoxicity), Biolegend Legendplex human inflammation panel 1 assay (SC cell lines, assessment of the inflammation activity) and MTT test to determine the cytotoxicity of the porous materials based on collagen IV fragments. It was found that out of the pool of 37 fragments (peptides 1-33 and 2.1-2.4) reconstructing the outer sphere of collagen IV, nine fragments (peptides: 2, 4, 5, 6, 14, 15, 25, 26 and 30), as a result of self-assembling, form structures mimicking the structure of the triple helix of native collagens. The stability of spatial structures formed as a result of self-organization at temperatures of 4 °C, 20 °C, and 40 °C was found. The application of the MST method allowed us to determine the Kd of binding of selected fragments of collagen IV to ITGα1ß1. The stability of the spatial structures of selected peptides made it possible to obtain porous materials based on their equimolar mixture. The formation of the porous materials was found for cross-linked structures and the material stabilized only by weak interactions. All tested peptides are non-cytotoxic against all tested cell lines. Selected peptides also showed no genotoxicity and no induction of immune system responses. Research on the use of porous materials based on fragments of type IV collagen, able to form stable spatial structures as scaffolds useful in regenerative medicine, will be continued.


Assuntos
Materiais Biocompatíveis/metabolismo , Colágeno Tipo IV/metabolismo , Peptídeos/metabolismo , Animais , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colágeno Tipo IV/síntese química , Colágeno Tipo IV/química , Humanos , Integrinas/metabolismo , Teste de Materiais , Camundongos , Peptídeos/síntese química , Peptídeos/química , Medicina Regenerativa
12.
Int J Mol Sci ; 21(11)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486393

RESUMO

Dental universal adhesives are considered an useful tool in modern dentistry as they can be used in different etching techniques, allow for simplified protocol and provide sufficient bond strength. However, there is still no consensus as to their toxicity towards pulp. Thus, the present study aimed to evaluate the cytotoxicity and genotoxicity of three universal adhesives: OptiBond Universal, Prime&Bond Universal and Adhese in an in vitro experimental model, monocyte/macrophage cell line SC (ATCC CRL-9855). The cytotoxicity was measured by means of XTT assay, whereas the genotoxicity (comet assay) was evaluated based on the percentage of DNA present in the comet tail. Furthermore, the ability of the adhesives to induce apoptosis was analyzed using flow cytometry (FC) with the FITC annexin V/propidium iodide (PI) double staining. The analysis of the cell cycle progression was performed with FC using PI staining. OptiBond Universal presented significant, while Prime&Bond Universal and Adhese Universal had minimal cytotoxicity and genotoxicity towards human SC cells. Moreover, only OptiBond Universal increased the level of apoptosis in SC cell line. None of the adhesives showed significant cell cycle arrest, as revealed by FC analysis. Due to substantial differences in toxicity in in vitro studies of dental adhesives, there is a great need for further research in order to establish more reliable test protocols allowing for standardized methodology.


Assuntos
Resinas Acrílicas/química , Bis-Fenol A-Glicidil Metacrilato/química , Cimentos Dentários/química , Ácidos Polimetacrílicos/química , Cimentos de Resina/química , Apoptose , Ciclo Celular , Linhagem Celular , Colorimetria , Ensaio Cometa , Citotoxinas , Dano ao DNA , Colagem Dentária , Dentina , Humanos , Técnicas In Vitro , Macrófagos/efeitos dos fármacos , Teste de Materiais , Monócitos/efeitos dos fármacos , Mutagênicos
13.
Int J Mol Sci ; 21(11)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466601

RESUMO

A series of new tetrahydroacridine and 3,5-dichlorobenzoic acid hybrids with different spacers were designed, synthesized, and evaluated for their ability to inhibit both cholinesterase enzymes. Compounds 3a, 3b, 3f, and 3g exhibited selective butyrylcholinesterase (EqBuChE) inhibition with IC50 values ranging from 24 to 607 nM. Among them, compound 3b was the most active (IC50 = 24 nM). Additionally, 3c (IC50 for EeAChE = 25 nM and IC50 for EqBuChE = 123 nM) displayed dual cholinesterase inhibitory activity and was the most active compound against acetylcholinesterase (AChE). Active compound 3c was also tested for the ability to inhibit Aß aggregation. Theoretical physicochemical properties of the compounds were calculated using ACD Labs Percepta and Chemaxon. A Lineweaver-Burk plot and docking study showed that 3c targeted both the catalytic active site (CAS) and the peripheral anionic site (PAS) of AChE. Moreover, 3c appears to possess neuroprotective activity and could be considered a free-radical scavenger. In addition, 3c did not cause DNA damage and was found to be less toxic than tacrine after oral administration; it also demonstrated little inhibitory activity towards hyaluronidase (HYAL), which may indicate that it possesses anti-inflammatory properties. The screening for new in vivo interactions between 3c and known receptors was realized by yeast three-hybrid technology (Y3H).


Assuntos
Doença de Alzheimer/tratamento farmacológico , Clorobenzoatos/química , Inibidores da Colinesterase/síntese química , Fármacos Neuroprotetores/síntese química , Tacrina/análogos & derivados , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Domínio Catalítico , Linhagem Celular Tumoral , Células Cultivadas , Inibidores da Colinesterase/efeitos adversos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Colinesterases/química , Colinesterases/metabolismo , Sequestradores de Radicais Livres/efeitos adversos , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/uso terapêutico , Humanos , Hialuronoglucosaminidase/antagonistas & inibidores , Camundongos , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/efeitos adversos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ligação Proteica , Multimerização Proteica/efeitos dos fármacos
14.
Mol Biol Rep ; 46(4): 3625-3636, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31020489

RESUMO

Topoisomerase II (Topo2) inhibitors in combination with cisplatin represent a common treatment modality used for glioma patients. The main mechanism of their action involves induction of DNA double-strand breaks (DSBs). DSBs are repaired via the homology-dependent DNA repair (HRR) and non-homologous end-joining (NHEJ). Inhibition of the NHEJ or HRR pathway sensitizes cancer cells to the treatment. In this work, we investigated the effect of three Topo2 inhibitors-etoposide, NK314, or HU-331 in combination with cisplatin in the U-87 human glioblastoma cell line. Etoposide as well as NK314 inhibited Topo2 activity by stabilizing Topo2-DNA cleavable complexes whereas HU-331 inhibited the ATPase activity of Topo2 using a noncompetitive mechanism. To increase the effectiveness of the treatment, we combined cisplatin and Topo2 inhibitor treatment with DSB repair inhibitors (DRIs). The cells were sensitized with NHEJ inhibitor, NU7441, or the novel HRR inhibitor, YU238259, prior to drug treatment. All of the investigated Topo2 inhibitors in combination with cisplatin efficiently killed the U-87 cells. The most cytotoxic effect was observed for the cisplatin + HU331 treatment scheme and this effect was significantly increased when a DRI pretreatment was used; however, we did not observed DSBs. Therefore, the molecular mechanism of cytotoxicity caused by the cisplatin + HU331 treatment scheme is yet to be evaluated. We observed a concentration-dependent change in DSB levels and accumulation at the G2/M checkpoint and S-phase in glioma cells incubated with NK314/cisplatin and etoposide/cisplatin. In conclusion, in combination with cisplatin, HU331 is the most potent Topo2 inhibitor of human glioblastoma cells.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Cisplatino/farmacologia , Glioblastoma/tratamento farmacológico , Fenantrenos/farmacologia , Inibidores da Topoisomerase II/farmacologia , Apoptose/efeitos dos fármacos , Benzamidas/farmacologia , Neoplasias Encefálicas/metabolismo , Canabidiol/análogos & derivados , Canabidiol/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cromonas/farmacologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA/efeitos dos fármacos , Etoposídeo/farmacologia , Glioblastoma/metabolismo , Humanos , Morfolinas/farmacologia , Sulfonamidas/farmacologia , Inibidores da Topoisomerase II/metabolismo
15.
Bioorg Med Chem Lett ; 27(12): 2713-2720, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28506752

RESUMO

Thiosemicarbazides and their analogs have shown potential medical applications as antiviral, antibacterial and anticancer drugs. We designed, synthesized and evaluated in vitro anticancer activity against ovarian (A2780), cervix (HeLa), colon (LoVo), breast (MCF-7) and brain (MO59J) human cancer cell lines of seven novel compounds -S-glycosylated thiosemicarbazones. We assessed the cyto- and genotoxic properties of all novel compounds using a variety of methods including comet assay, XTT assay, various fluorescent assays and toxicology PathwayFinder expression array. We tried to evaluate their possible mechanism of action with particular attention to induction of DNA damage and repair, apoptosis, oxidative stress analysis and cellular response in terms of changes in gene expression. The most sensitive cell line was human ovarian cancer. The results revealed that the major activity against A2780 cancer cell line displayed by our compounds is induction of DNA damage. This effect is not associated with apoptosis or oxidative stress induction and the resulting damage will not lead to cell cycle arrest. We also observed up-expression of heat shock related genes and NQO1 gene in response to our compounds. The second effect seems to be specific to glycosylated S-bond compounds as we observed it earlier. Upregulation of heat shock protein encoding genes suggest that our compounds induce stressful conditions. The nature of this phenomena (heat shock, pH shift or hypoxia) needs further study.


Assuntos
Antineoplásicos/farmacologia , Tiossemicarbazonas/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares , Conformação Molecular , Relação Estrutura-Atividade , Tiossemicarbazonas/síntese química , Tiossemicarbazonas/química
16.
Biomedicines ; 12(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38672243

RESUMO

Non-small cell lung cancer (NSCLC) represents the most common histological type of lung cancer, characterized by a five-year survival rate of 15% and poor prognosis. Accumulating evidence indicates a prominent role of endoplasmic reticulum (ER) stress and the protein kinase RNA-like ER kinase (PERK)-dependent pathway of the unfolded protein response (UPR) in the pathogenesis of NSCLC. Increased expression of downstream targets of PERK was observed in various subtypes of NSCLC, and it was associated with a more aggressive phenotype, high risk of recurrence, and poor prognosis. Therefore, the present study aimed to investigate the biological effect of the selective PERK inhibitor NCI 159456 on A549 NSCLC cells and Human Pulmonary Fibroblasts (HPF) in vitro. Treatment of both normal and ER-stressed A549 cells with NCI 159456 resulted in a significant increase in the mRNA expression level of pro-apoptotic genes like activating transcription factor 4 (ATF4), DNA damage inducible transcript 3 (DDIT3), and BCL2 Associated X, Apoptosis Regulator (BAX) as well as a decreased level of the anti-apoptotic gene B-cell lymphoma 2 (Bcl-2). Cytotoxicity and genotoxicity analyses revealed that NCI 159456 significantly decreased viability and increased DNA damage in A549 cells under normal and ER stress conditions. Caspase-3 and reactive oxygen species (ROS) detection assays demonstrated that NCI 159456 significantly induced apoptosis and increased the ROS level in normal and ER-stressed A549 cells. Importantly, treatment with the inhibitor did not affect substantially normal HPF cells at any used concentration. The results indicate that PERK inhibitors could potentially be applied as a targeted therapy for NSCLC.

17.
Cancers (Basel) ; 16(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38201645

RESUMO

The conjugate N-adducts of thio-1,3,4-diazole and 2-thiazoline with levoglucosenone were synthesized via a stereoselective, base-catalyzed conjugate N-Michael addition to levoglucosenone at C-4. Structural assignments were established using 1H and 13C NMR analysis, and X-ray single-crystal analysis for one of the compounds. The biological properties of the novel compounds were tested on a cell model. Cytotoxicity was analyzed via colorimetric assay. Two distinct types of cell death, apoptosis and necrosis, were analyzed by determining the phosphatidylserine levels from the outer leaflet of the plasma membrane, caspase activation, and lactate dehydrogenase release. We also evaluated DNA damage using an alkaline comet assay. The level of oxidative stress was measured with a modified comet assay and an H2DCFDA probe. The thio-1,3,4-diazole adduct (FCP23) and the 2-thiazoline adduct (FCP26) exhibit similar cytotoxicity values for cancer cells (ovarian (A2780), breast (MCF-7), cervix (HeLa), colon (LoVo), and brain (MO59J and MO59K)), but their mechanism of action is drastically different. While FCP23 induces oxidative stress, DNA damage, and necrosis, FCP26 induces apoptosis through caspase activation.

18.
Sci Rep ; 14(1): 4124, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374199

RESUMO

The aim of this study was to evaluate cytotoxicity and genotoxicity of calcium-silicate based sealers and comparing them with a gold standard-an epoxy-based sealant. Two experimental cell lines were used, gingival fibroblasts (hGF) and monocyte/macrophage peripheral blood cell line (SC). The cytotoxicity (XTT assay) and genotoxicity (comet assay) were evaluated both after 24-h and 48-h incubation. Additionally, after 48-h incubation, the cell apoptosis and cell cycle progression was detected. BioRoot Flow induced a significant decrease in hGF cells viability compared to the negative control groups both after 24-h (p < 0.001) and 48-h incubation (p < 0.01). In group with SC cells, after 24-h incubation significant increase in cells viability was detected for AH Plus Bioceramic Sealer in comparison to negative control (p < 0.05). BioRoot Flow and BioRoot RCS can be considered potentially genotoxic for the hGF cells after 48-h incubation (> 20% DNA damage). BioRoot Flow and BioRoot RCS, may have potential genotoxic effects and induce apoptosis in hGF cells which may irritate periapical tissues, resulting in a delayed healing. The findings of the study would be useful in selection of an appropriate sealant for root canal filling without causing cytotoxicity and genotoxicity.


Assuntos
Materiais Restauradores do Canal Radicular , Materiais Restauradores do Canal Radicular/toxicidade , Cavidade Pulpar , Resinas Epóxi/toxicidade , Compostos de Cálcio , Linhagem Celular , Dano ao DNA , Resinas Vegetais , Silicatos/toxicidade , Teste de Materiais
19.
Pharmaceutics ; 15(8)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37631265

RESUMO

α-synuclein (α-syn) is an intrinsically disordered protein abundant in the central nervous system. Physiologically, the protein regulates vesicle trafficking and neurotransmitter release in the presynaptic terminals. Pathologies related to misfolding and aggregation of α-syn are referred to as α-synucleinopathies, and they constitute a frequent cause of neurodegeneration. The most common α-synucleinopathy, Parkinson's disease (PD), is caused by abnormal accumulation of α-syn in the dopaminergic neurons of the midbrain. This results in protein overload, activation of endoplasmic reticulum (ER) stress, and, ultimately, neural cell apoptosis and neurodegeneration. To date, the available treatment options for PD are only symptomatic and rely on dopamine replacement therapy or palliative surgery. As the prevalence of PD has skyrocketed in recent years, there is a pending issue for development of new disease-modifying strategies. These include anti-aggregative agents that target α-syn directly (gene therapy, small molecules and immunization), indirectly (modulators of ER stress, oxidative stress and clearance pathways) or combine both actions (natural compounds). Herein, we provide an overview on the characteristic features of the structure and pathogenic mechanisms of α-syn that could be targeted with novel molecular-based therapies.

20.
Mol Med Rep ; 27(5)2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36999601

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder in worldwide and remains a therapeutic challenge due to the low efficacy of current treatments. Numerous studies have demonstrated the pivotal role of endoplasmic reticulum (ER) stress in PD pathogenesis. ER stress, followed by activation of the protein kinase RNA­like endoplasmic reticulum kinase (PERK)­dependent branch of the unfolded protein response signaling pathway, ultimately leads to neural cell death and dopaminergic neurodegeneration in PD. Therefore, the present study evaluated the effectiveness of the small­molecule PERK inhibitor LDN­87357 in an in vitro PD model using the human neuroblastoma SH­SY5Y cell line. To assess the mRNA expression levels of the pro­apoptotic ER stress markers, the TaqMan Gene Expression Assay was performed. Cytotoxicity was assessed using a colorimetric 2,3­bis­(2­methoxy­4­nitro­5­sulfophenyl)­ 2H­tetrazolium­5­carboxanilide assay and apoptosis was assessed using a caspase­3 assay. Moreover, cell cycle progression was evaluated using flow cytometry. The results indicated that LDN­87357 treatment induced a significant decrease in ER stress markers gene expression in SH­SY5Y cells exposed to ER stress. Furthermore, LDN­87357 significantly increased viability, diminished apoptosis and restored the normal cell cycle distribution of SH­SY5Y cells after ER stress induction. Therefore, the evaluation of small­molecule PERK inhibitors, such as LDN­87357, may lead to the development of novel therapeutic strategies against PD.


Assuntos
Neuroblastoma , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , eIF-2 Quinase/metabolismo , Estresse do Retículo Endoplasmático/genética , Apoptose/genética , Retículo Endoplasmático/metabolismo , RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA