RESUMO
The efficiency of the synthesis of renewable fuels and feedstocks from electrical sources is limited, at present, by the sluggish water oxidation reaction. Single-atom catalysts (SACs) with a controllable coordination environment and exceptional atom utilization efficiency open new paradigms toward designing high-performance water oxidation catalysts. Here, using operando X-ray absorption spectroscopy measurements with calculations of spectra and electrochemical activity, we demonstrate that the origin of water oxidation activity of IrNiFe SACs is the presence of highly oxidized Ir single atom (Ir5.3+) in the NiFe oxyhydroxide under operating conditions. We show that the optimal water oxidation catalyst could be achieved by systematically increasing the oxidation state and modulating the coordination environment of the Ir active sites anchored atop the NiFe oxyhydroxide layers. Based on the proposed mechanism, we have successfully anchored Ir single-atom sites on NiFe oxyhydroxides (Ir0.1/Ni9Fe SAC) via a unique in situ cryogenic-photochemical reduction method that delivers an overpotential of 183 mV at 10 mA â cm-2 and retains its performance following 100 h of operation in 1 M KOH electrolyte, outperforming the reported catalysts and the commercial IrO2 catalysts. These findings open the avenue toward an atomic-level understanding of the oxygen evolution of catalytic centers under in operando conditions.
RESUMO
In situ techniques are essential to understanding the behavior of electrocatalysts under operating conditions. When employed, in situ synchrotron grazing-incidence X-ray diffraction (GI-XRD) can provide time-resolved structural information of materials formed at the electrode surface. In situ cells, however, often require epoxy resins to secure electrodes, do not enable electrolyte flow, or exhibit limited chemical compatibility, hindering the study of non-aqueous electrochemical systems. Here, a versatile electrochemical cell for air-free in situ synchrotron GI-XRD during non-aqueous Li-mediated electrochemical N2 reduction (Li-N2R) has been designed. This cell not only fulfills the stringent material requirements necessary to study this system but is also readily extendable to other electrochemical systems. Under conditions relevant to non-aqueous Li-N2R, the formation of Li metal, LiOH and Li2O as well as a peak consistent with the α-phase of Li3N was observed, thus demonstrating the functionality of this cell toward developing a mechanistic understanding of complicated electrochemical systems.
RESUMO
Dolphins are known for their complex vocal communication, not least because of their capacity for acoustic plasticity. Paradoxically, we know little about their capacity for flexible vocal use. The difficulty in describing the behaviours performed underwater while vocalizing makes it difficult to analyse the contexts of emissions. Dolphins' main vocal categories are typically considered to be used for scanning the environment (clicks), agonistic encounters (burst pulses) and socio-affiliative interactions (whistles). Dolphins can also combine these categories in mixed vocal emissions, whose use remains unclear. To better understand how vocalizations are used, we simultaneously recorded vocal production and the associated behaviours by conducting underwater observations (N = 479 events) on a group of 7 bottlenose dolphins under human care. Our results showed a non-random association between vocal categories and behavioural contexts. Precisely, clicks were preferentially emitted during affiliative interactions and not during other social/solitary contexts, supporting a possible complementary communicative function. Burst pulses were associated to high arousal contexts (agonistic and social play), pinpointing on their use as an "emotively charged" signal. Whistles were related to solitary swimming and not preferentially produced in any social context. This questions whistles' functions and supports their potential role as a distant contact call. Finally, mixed vocalizations were especially found associated with sexual (bust pulse-whistle-click), solitary play (burst pulse-whistle) and affiliative (click-whistle) behaviours. Depending on the case, their emission seems to confirm, modify or refine the functions of their simple counterparts. These results open up new avenues of research into the contextual use of dolphin acoustic signals.
Assuntos
Golfinho Nariz-de-Garrafa , Animais , Humanos , Vocalização Animal , Comportamento Social , Natação , AcústicaRESUMO
Improving electrocatalyst stability is critical for the development of electrocatalytic devices. Herein, we utilize an on-line electrochemical flow cell coupled with an inductively coupled plasma-mass spectrometer (ICP-MS) to characterize the impact of composition and reactant gas on the multielement dissolution of Mn(-Cr)-Sb-O electrocatalysts. Compared to Mn2O3 and Cr2O3 oxides, the antimonate framework stabilizes Mn at OER potentials and Cr at both ORR and OER potentials. Furthermore, dissolution of Mn and Cr from Mn(-Cr) -Sb-O is driven by the ORR reaction rate, with minimal dissolution under N2. We observe preferential dissolution of Cr totaling 13% over 10 min at 0.3, 0.6, and 0.9 V vs RHE, with only 1.5% loss of Mn, indicating an enrichment of Mn at the surface of the particles. Despite this asymmetric dissolution, operando X-ray absorption spectroscopy (XAS) showed no measurable changes in the Mn K-edge at comparable potentials. This could suggest that modification to the Mn oxidation state and/or phase in the surface layer is too small or that the layer is too thin to be measured with the bulk XAS measurement. Lastly, on-line ICP-MS was used to assess the effects of applied potential, scan rate, and current on Mn-Cr-Sb-O during cyclic voltammetry and accelerated stress tests. With this deeper understanding of the interplay between oxygen reduction and dissolution, testing procedures were identified to maximize both activity and stability. This work highlights the use of multimodal in situ characterization techniques in tandem to build a more complete model of stability and develop protocols for optimizing catalyst performance.
RESUMO
Ni and nitrogen-doped carbons are selective catalysts for CO2 reduction to CO (CO2R), but the hypothesized NiNx active sites are challenging to probe with traditional characterization methods. Here, we synthesize 61Ni-enriched model catalysts, termed 61NiPACN, in order to apply 61Ni Mössbauer spectroscopy using synchrotron radiation (61Ni-SR-MS) to characterize the structure of these atomically dispersed NiNx sites. First, we demonstrate that the CO2R results and standard characterization techniques (SEM, PXRD, XPS, XANES, EXAFS) point to the existence of dispersed Ni active sites. Then, 61Ni-SR-MS reveal significant internal magnetic fields of â¼5.4 T, which is characteristic of paramagnetic, high-spin Ni2+, in the 61NiPACN samples. Finally, theoretical calculations for a variety of Ni-Nx moieties confirm that high-spin Ni2+ is stable in non-planar, tetrahedrally distorted geometries, which results in calculated isotropic hyperfine coupling that is consistent with 61Ni-SR-MS measurements.
RESUMO
Femtosecond-resolved Extended X-ray Absorption Fine Structure (EXAFS) measurements of solvated transition metal complexes are successfully implemented at the X-ray Free Electron Laser LCLS. Benchmark experiments on [Fe(terpy)2]2+ in solution show a signal-to-noise ratio on the order of 500, comparable to typical 100 ps-resolution synchrotron measurements. In the few femtoseconds after photoexcitation, we observe the EXAFS fingerprints of a short-lived (â¼100 fs) intermediate as well as those of a vibrationally hot long-lived (â¼ns) excited state.
RESUMO
Valence-to-core x-ray emission spectroscopy (VtC XES) combines the sample flexibility and element specificity of hard x-rays with the chemical environment sensitivity of valence spectroscopy. We extend this technique to study geometric and electronic structural changes induced by photoexcitation in the femtosecond time domain via laser-pump, x-ray probe experiments using an x-ray free electron laser. The results of time-resolved VtC XES on a series of ferrous complexes [Fe(CN)2n(2, 2'-bipyridine)3-n]-2n+2, n = 1, 2, 3, are presented. Comparisons of spectra obtained from ground state density functional theory calculations reveal signatures of excited state bond length and oxidation state changes. An oxidation state change associated with a metal-to-ligand charge transfer state with a lifetime of less than 100 fs is observed, as well as bond length changes associated with metal-centered excited states with lifetimes of 13 ps and 250 ps.
RESUMO
Peripheral arterial disease (PAD) and its most severe form, critical limb ischaemia (CLI), are very common clinical conditions related to atherosclerosis and represent the major causes of morbidity, mortality, disability, and reduced quality of life (QoL), especially for the onset of ischaemic chronic leg ulcers (ICLUs) and the subsequent need of amputation in affected patients. Early identification of patients at risk of developing ICLUs may represent the best form of prevention and appropriate management. In this study, we used a Prediction System for Chronic Leg Ulcers (PredyCLU) based on fuzzy logic applied to patients with PAD. The patient population consisted of 80 patients with PAD, of which 40 patients (30 males [75%] and 10 females [25%]; mean age 66.18 years; median age 67.50 years) had ICLUs and represented the case group. Forty patients (100%) (27 males [67.50%] and 13 females [32.50%]; mean age 66.43 years; median age 66.50 years) did not have ICLUs and represented the control group. In patients of the case group, the higher was the risk calculated with the PredyCLU the more severe were the clinical manifestations recorded. In this study, the PredyCLU algorithm was retrospectively applied on a multicentre population of 80 patients with PAD. The PredyCLU algorithm provided a reliable risk score for the risk of ICLUs in patients with PAD.
Assuntos
Diagnóstico Precoce , Lógica Fuzzy , Úlcera da Perna/diagnóstico , Úlcera da Perna/fisiopatologia , Doença Arterial Periférica/diagnóstico , Medição de Risco/estatística & dados numéricos , Artérias da Tíbia/fisiopatologia , Idoso , Algoritmos , Doença Crônica , Feminino , Humanos , Itália , Úlcera da Perna/terapia , Masculino , Doença Arterial Periférica/terapia , Valor Preditivo dos Testes , Estudos RetrospectivosRESUMO
Ni,N-doped carbon catalysts have shown promising catalytic performance for CO2 electroreduction (CO2 R) to CO; this activity has often been attributed to the presence of nitrogen-coordinated, single Ni atom active sites. However, experimentally confirming Ni-N bonding and correlating CO2 reduction (CO2 R) activity to these species has remained a fundamental challenge. We synthesized polyacrylonitrile-derived Ni,N-doped carbon electrocatalysts (Ni-PACN) with a range of pyrolysis temperatures and Ni loadings and correlated their electrochemical activity with extensive physiochemical characterization to rigorously address the origin of activity in these materials. We found that the CO2 R to CO partial current density increased with increased Ni content before plateauing at 2â wt % which suggests a dispersed Ni active site. These dispersed active sites were investigated by hard and soft X-ray spectroscopy, which revealed that pyrrolic nitrogen ligands selectively bind Ni atoms in a distorted square-planar geometry that strongly resembles the active sites of molecular metal-porphyrin catalysts.
RESUMO
An X-ray emission spectrometer that can detect the sulfur Kα emission lines with large throughput and a high energy resolution is presented. The instrument is based on a large d-spacing perfect Bragg analyzer that diffracts the sulfur Kα emission at close to backscattering angles. This facilitates the application of efficient concepts routinely employed in hard X-ray spectrometers towards the tender X-ray regime. The instrument described in this work is based on an energy-dispersive von Hamos geometry that is well suited for photon-in photon-out spectroscopy at X-ray free-electron laser and synchrotron sources. Comparison of its performance with previously used instrumentation is presented through measurements using sulfur-containing species performed at the LCLS. It is shown that the overall signal intensity is increased by a factor of â¼15. Implementation of this approach in the design of a tender X-ray spectroscopy endstation for LCLS-II is also discussed.
RESUMO
Methanol is a major fuel and chemical feedstock currently produced from syngas, a CO/CO2 /H2 mixture. Herein we identify formate binding strength as a key parameter limiting the activity and stability of known catalysts for methanol synthesis in the presence of CO2 . We present a molybdenum phosphide catalyst for CO and CO2 reduction to methanol, which through a weaker interaction with formate, can improve the activity and stability of methanol synthesis catalysts in a wide range of CO/CO2 /H2 feeds.
RESUMO
We report high-energy-resolution X-ray absorption spectroscopy detection of ethylene and CO ligands adsorbed on catalytically active iridium centers isolated on zeolite HY and on MgO supports. The data are supported by density functional theory and FEFF X-ray absorption near-edge modelling, together with infrared (IR) spectra. The results demonstrate that high-energy-resolution X-ray absorption spectra near the iridium LIII (2p3/2 ) edge provide clearly ascribable, distinctive signatures of the ethylene and CO ligands and illustrate effects of supports and other ligands. This X-ray absorption technique is markedly more sensitive than conventional IR spectroscopy for characterizing surface intermediates, and it is applicable to samples having low metal loadings and in reactive atmospheres and is expected to have an increasing role in catalysis research by facilitating the determination of mechanisms of solid-catalyzed reactions through identification of reaction intermediates in working catalysts.
RESUMO
Extensive chlorination of γ-Al2O3 results in the formation of highly Lewis acidic surface domains depleted in surface hydroxyl groups. Adsorption of methyltrioxorhenium (MTO) onto these chlorinated domains serves to activate it as a low temperature, heterogeneous olefin metathesis catalyst and confers both high activity and high stability. Characterization of the catalyst reveals that the immobilized MTO undergoes partial ligand exchange with the surface, whereby some Re sites acquire a chloride ligand from the modified alumina while donating an oxo ligand to the support. More specifically, Re LIII-edge EXAFS and DFT calculations support facile ligand exchange between MTO and Cl-Al2O3 to generate [CH3ReO2Cl+] fragments that interact with a bridging oxygen of the support via a Lewis acid-base interaction. According to IR and solid-state NMR, the methyl group remains intact, and does not evolve spontaneously to a stable methylene tautomer. Nevertheless, the chloride-promoted metathesis catalyst is far more active and productive than MTO/γ-Al2O3, easily achieving a TON of 100â¯000 for propene metathesis in a flow reactor at 10 °C (compared to TON < 5000 for the nonchlorinated catalyst). Increased activity is a consequence of both a larger fraction of active sites and a higher intrinsic activity for the new sites. Increased stability is tentatively attributed to a stronger interaction between MTO and chlorinated surface regions, as well as extensive depletion of the Brønsted acidic surface hydroxyl population. The reformulated catalyst represents a major advance for Re-based metathesis catalysts, whose widespread use has thus far been severely hampered by their instability.
RESUMO
Chronic leg ulcers (CLUs) are a common occurrence in the western population and are associated with a negative impact on the quality of life of patients. They also cause a substantial burden on the health budget. The pathogenesis of leg ulceration is quite heterogeneous, and chronic venous ulceration (CVU) is the most common manifestation representing the main complication of chronic venous disease (CVD). Prevention strategies and early identification of the risk represent the best form of management. Fuzzy logic is a flexible mathematical system that has proved to be a powerful tool for decision-making systems and pattern classification systems in medicine. In this study, we have elaborated a computerised prediction system for chronic leg ulcers (PredyCLU) based on fuzzy logic, which was retrospectively applied on a multicentre population of 77 patients with CVD. This evaluation system produced reliable risk score patterns and served effectively as a stratification risk tool in patients with CVD who were at the risk of developing CVUs.
Assuntos
Lógica Fuzzy , Úlcera da Perna/epidemiologia , Flebite/epidemiologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Doença Crônica , Feminino , Humanos , Incidência , Itália/epidemiologia , Úlcera da Perna/diagnóstico , Úlcera da Perna/terapia , Masculino , Flebite/diagnóstico , Valor Preditivo dos Testes , Estudos Retrospectivos , Medição de Risco , Índice de Gravidade de Doença , Úlcera Varicosa/diagnóstico , Úlcera Varicosa/epidemiologia , Cicatrização/fisiologiaRESUMO
The growing number of scientific papers and document sources underscores the need for methods capable of evaluating the quality of publications. Researchers who are looking for relevant papers for their studies need ways to assess the scientific value of these documents. One approach involves using semantic search engines that can automatically extract important knowledge from the growing body of text. In this study, we introduce a new metric called "MAATrica," which serves as the foundation for an innovative method designed to evaluate research papers. MAATrica offers a new way to analyze and categorize text, focusing on the consistency of research documents in the life sciences, particularly in the fields of medicinal and nutraceutical chemistry. This method utilizes semantic descriptions to cover in silico experiments, as well as in vitro and in vivo essays. Created to aid in evaluation processes like peer review, MAATrica uses toolkits and semantic applications to build the proposed measure, identify scientific entities, and gather information. We have applied MAATrica to roughly 90,000 papers and present our findings here.
Assuntos
Suplementos Nutricionais , Suplementos Nutricionais/análise , Química Farmacêutica , Humanos , SemânticaRESUMO
Background: Violence against healthcare workers is an escalating public health concern, affecting the quality of care, and causing significant psychological and physical effects on healthcare professionals. This study analysed the trend in aggressions in healthcare settings in the pre-pandemic, pandemic, and post-pandemic periods. Methods: An observational descriptive study was conducted to analyse reports of violence against healthcare workers from January 2018 to June 2023 at a Local Health Authority "ASL3" in the Liguria region of Italy. The study considered variables such as the severity of aggression, professional category involved, and location of incident. Episodes of violence were classified according to severity by means of a colour-coded system. We used multinomial logistic regression to examine any associations between the pandemic phase and the various factors, while controlling for relevant variables. Results: The number of reported aggressions rose from 48 in 2018 to 90 in 2022, with a partial count of 35 in the first half of 2023. The pandemic phase saw a rise in incidents classified as Green codes, which accounted for 58.3%, and a significant involvement of District Services. The post-pandemic phase showed a reversion to pre-pandemic levels but with an increase in Yellow codes (5.6%). Nurses were the most frequent victims, with figures ranging from 50.8% to 95.6% over the years. The Emergency Department and Psychiatric Services emerged as the most critical settings of aggressions, with incidents recorded in these areas constituting over half of the total number. However, an increase in violence was also recorded in district healthcare settings during the post-pandemic phase. Conclusions: There is an urgent need for comprehensive strategies for the prevention of violence in healthcare settings. The increasing trend in violence, especially during the pandemic, necessitates integrated approaches that encompass training, psychological support, security policies, and a strong organizational culture to promote safety and respect. Protecting healthcare workers is crucial to their wellbeing and the quality of healthcare delivery.
Assuntos
COVID-19 , Pessoal de Saúde , Violência no Trabalho , Humanos , Itália/epidemiologia , COVID-19/epidemiologia , Pessoal de Saúde/psicologia , Masculino , Feminino , Violência no Trabalho/estatística & dados numéricos , Adulto , SARS-CoV-2 , Pessoa de Meia-Idade , PandemiasRESUMO
CO2 hydrogenation to chemicals and fuels is a significant approach for achieving carbon neutrality. It is essential to rationally design the chemical structure and catalytic active sites towards the development of efficient catalysts. Here we show a Ce-CuZn catalyst with enriched Cu/Zn-OV-Ce active sites fabricated through the atomic-level substitution of Cu and Zn into Ce-MOF precursor. The Ce-CuZn catalyst exhibits a high methanol selectivity of 71.1% and a space-time yield of methanol up to 400.3 g·kgcat-1·h-1 with excellent stability for 170 h at 260 °C, comparable to that of the state-of-the-art CuZnAl catalysts. Controlled experiments and DFT calculations confirm that the incorporation of Cu and Zn into CeO2 with abundant oxygen vacancies can facilitate H2 dissociation energetically and thus improve CO2 hydrogenation over the Ce-CuZn catalyst via formate intermediates. This work offers an atomic-level design strategy for constructing efficient multi-metal catalysts for methanol synthesis through precise control of active sites.
RESUMO
Niobium-containing silica materials obtained by deposition via liquid-phase grafting or dry impregnation of niobocene(iv) dichloride are active and selective catalysts in the epoxidation of alkenes in the presence of aqueous hydrogen peroxide. The generation of the catalytically-active Nb species was followed step-by-step, and investigated using a combined DR-UV-Vis, NIR, Raman, XRD, XANES and EXAFS analyses. At the end of the grafting procedure, the nature of the surface active species can be described as an oxo-Nb(v) site, tripodally grafted onto the silica surface in close proximity to other Nb(v) centres. The liquid-phase methodology provides a better dispersion of the metal sites onto the siliceous support than the dry-impregnation approach. The niobium-silica catalysts were then tested in the epoxidation of cyclohexene and 1-methylcyclohexene, as model substrates.
Assuntos
Cicloparafinas/química , Ciclopentanos/química , Compostos de Epóxi/síntese química , Nióbio/química , Compostos Organometálicos/química , Dióxido de Silício/química , Catálise , Domínio Catalítico , Compostos de Epóxi/químicaRESUMO
In some application fields, such as underwater archaeology or marine biology, there is the need to collect three-dimensional, close-range data from objects that cannot be removed from their site. In particular, 3D imaging techniques are widely employed for close-range acquisitions in underwater environment. In this work we have compared in water two 3D imaging techniques based on active and passive approaches, respectively, and whole-field acquisition. The comparison is performed under poor visibility conditions, produced in the laboratory by suspending different quantities of clay in a water tank. For a fair comparison, a stereo configuration has been adopted for both the techniques, using the same setup, working distance, calibration, and objects. At the moment, the proposed setup is not suitable for real world applications, but it allowed us to conduct a preliminary analysis on the performances of the two techniques and to understand their capability to acquire 3D points in presence of turbidity. The performances have been evaluated in terms of accuracy and density of the acquired 3D points. Our results can be used as a reference for further comparisons in the analysis of other 3D techniques and algorithms.
Assuntos
Algoritmos , Artefatos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Radar , Imersão , ÁguaRESUMO
Reliably identifying short-lived chemical reaction intermediates is crucial to elucidate reaction mechanisms but becomes particularly challenging when multiple transient species occur simultaneously. Here, we report a femtosecond x-ray emission spectroscopy and scattering study of the aqueous ferricyanide photochemistry, utilizing the combined Fe Kß main and valence-to-core emission lines. Following UV-excitation, we observe a ligand-to-metal charge transfer excited state that decays within 0.5 ps. On this timescale, we also detect a hitherto unobserved short-lived species that we assign to a ferric penta-coordinate intermediate of the photo-aquation reaction. We provide evidence that bond photolysis occurs from reactive metal-centered excited states that are populated through relaxation of the charge transfer excited state. Beyond illuminating the elusive ferricyanide photochemistry, these results show how current limitations of Kß main line analysis in assigning ultrafast reaction intermediates can be circumvented by simultaneously using the valence-to-core spectral range.