Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int Wound J ; 13(5): 799-808, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25471005

RESUMO

The aim of this study was to investigate the wound-healing activity of (-)-borneol (BOR) incorporated in chitosan film on healing protocol in rodents. To assess the BOR wound-healing potential, male Wistar rats were subjected to a full-thickness excisional wound. The animals were divided into three groups: dressed with chitosan-based film (QUIN); dressed with chitosan-based film containing 0·5% BOR (QUIBO05); or dressed with chitosan-based film containing 1% BOR (QUIBO1). Dressing the wound areas and histological analysis were performed on the 3rd, 7th, 14th, and 21st days. The myeloperoxidase (MPO) activity was assessed on the third and seventh days after surgical procedures. Wounds dressed with chitosan-based film containing BOR reduced significantly the MPO activity (P < 0·001), showed significantly larger wound retraction rates (7 days, P < 0·05), improved the granulation reaction, and also provided better collagenisation density and arrangement during wound healing. It is suggested that BOR modulates the wound-healing process and is a promising compound to be used in wound care. This product may be quite useful in improving wound healing and could be a new biotechnological product with healing properties and clinical application. Further ongoing studies will enable us to understand the precise mechanisms whereby BOR improves the wound-healing process.


Assuntos
Canfanos/uso terapêutico , Quitosana/uso terapêutico , Monoterpenos/uso terapêutico , Pele/efeitos dos fármacos , Pele/patologia , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões/tratamento farmacológico , Animais , Bandagens , Masculino , Ratos , Ratos Wistar , Cicatrização/fisiologia
2.
Eur J Pharm Sci ; 150: 105335, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32272211

RESUMO

Leishmaniasis are a group of neglected infectious diseases caused by protozoa of the genus Leishmania with distinct presentations. The available leishmaniasis treatment options are either expensive and/or; cause adverse effects and some are ineffective for resistant Leishmania strains. Therefore, molecules derived from natural products as the monoterpene carvacrol, have attracted interest as promising anti-leishmania agents. However, the therapeutic use of carvacrol is limited due to its low aqueous solubility, rapid oxidation and volatilization. Thus, the development of nanostructured lipid carriers (NLCs) was proposed in the present study as a promising nanotechnology strategy to overcome these limitations and enable the use of carvacrol in leishmaniasis therapy. Carvacrol NLCs were obtained using a warm microemulsion method, and evaluated regarding the influence of lipid matrix and components concentration on the NLCs formation. NLCs were characterized by DSC and XRD as well. In addition, to the in vitro carvacrol release from NLCs, the in vitro cytotoxicity and leishmanicidal activity assays, and the in vivo pharmacokinetics evaluation of free and encapsulated carvacrol were performed. NLCs containing carvacrol were obtained successfully using a warm microemulsion dilution method. The NLCs formulation with the lowest particle size (98.42 ± 0.80 nm), narrowest size distribution (suitable for intravenous administration), and the highest encapsulation efficiency was produced by using beeswax as solid lipid (HLB=9) and 5% of lipids and surfactant. The in vitro release of carvacrol from NLCs was fitted to the Korsmeyer and Peppas, and Weibull models, demonstrating that the release mechanism is probably the Fickian diffusion type. Moreover, carvacrol encapsulation in NLCs provided a lower cytotoxicity in comparison to free carvacrol (p<0.05), increasing its in vitro leishmanicidal efficacy in the amastigote form. Finally, the in vivo pharmacokinetics of carvacrol after IV bolus administration suggests that this phenolic monoterpene undergoes enterohepatic circulation and therefore presented a long half-life (t1/2) and low clearance (Cl). In addition, C0, mean residence time (MRT) and Vdss of encapsulated carvacrol were higher than free carvacrol (p < 0.05), favoring a higher distribution of carvacrol in the target tissues. Thus, it is possible to conclude that the developed NLCs are a promising delivery system for leishmaniasis treatment.


Assuntos
Antiprotozoários/administração & dosagem , Cimenos/administração & dosagem , Portadores de Fármacos/administração & dosagem , Leishmania/efeitos dos fármacos , Nanoestruturas/administração & dosagem , Animais , Antiprotozoários/sangue , Antiprotozoários/química , Antiprotozoários/farmacocinética , Sobrevivência Celular/efeitos dos fármacos , Cimenos/sangue , Cimenos/farmacocinética , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Liberação Controlada de Fármacos , Humanos , Leishmaniose/tratamento farmacológico , Lipídeos/administração & dosagem , Lipídeos/química , Lipídeos/farmacocinética , Macrófagos Peritoneais/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Nanoestruturas/química , Ratos Wistar , Células THP-1
3.
Pest Manag Sci ; 75(2): 452-459, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29998608

RESUMO

BACKGROUND: One of the most efficient ways to prevent arboviruses, such as dengue fever, yellow fever, chikungunya and Zika, is by controlling their vector, the Aedes aegypti. Because this vector is becoming resistant to most larvicides used, the development of new larvicides should be considered. ß-Cyclodextrin (ß-CD) complexes have been investigated as an interesting way of enabling the use of essential oils in water as larvicides. This study comprised the development of Lippia gracilis essential oil (LGEO) and ß-CD inclusion complexes for control of Ae. aegypti. RESULTS: Thermal analysis clearly showed the formation of complexes using kneading and co-evaporation methods. Gas chromatography analysis showed that kneading without co-solvent (KW) gave the highest content (∼ 15%) of the LGEO major component. Moreover, KW showed that the complex had a 50% lethal concentration (LC50 ; 33 ppm) lower than that of pure LGEO (39 ppm); in other words, complexing LGEO with ß-CD improved the larvicidal activity. In addition, LGEO complexed with ß-CD (KW) was not harmful to non-target organisms at the concentrations needed to control Ae. aegypti larvae. CONCLUSION: The inclusion complex with LGEO was a feasible formulation, being economically viable, easy-to-apply and without impact on non-target organisms and, therefore, is a potential alternative larvicide for Ae. aegypti control. © 2018 Society of Chemical Industry.


Assuntos
Aedes , Inseticidas , Lippia/química , Controle de Mosquitos , Óleos Voláteis , beta-Ciclodextrinas , Aedes/crescimento & desenvolvimento , Animais , Larva/crescimento & desenvolvimento , Controle de Mosquitos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA