Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Gut ; 73(2): 282-297, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37884352

RESUMO

OBJECTIVE: We sought to investigate the role of interleukin (IL)-20 in IBD and experimental colitis. DESIGN: Experimental colitis was induced in mice deficient in components of the IL-20 and signal transducer and activator of transcription (STAT)2 signalling pathways. In vivo imaging, high-resolution mini-endoscopy and histology were used to assess intestinal inflammation. We further used RNA-sequencing (RNA-Seq), RNAScope and Gene Ontology analysis, western blot analysis and co-immunoprecipitation, confocal microscopy and intestinal epithelial cell (IEC)-derived three-dimensional organoids to investigate the underlying molecular mechanisms. Results were validated using samples from patients with IBD and non-IBD control subjects by a combination of RNA-Seq, organoids and immunostainings. RESULTS: In IBD, IL20 levels were induced during remission and were significantly higher in antitumour necrosis factor responders versus non-responders. IL-20RA and IL-20RB were present on IECs from patients with IBD and IL-20-induced STAT3 and suppressed interferon (IFN)-STAT2 signalling in these cells. In IBD, experimental dextran sulfate sodium (DSS)-induced colitis and mucosal healing, IECs were the main producers of IL-20. Compared with wildtype controls, Il20-/-, Il20ra-/- and Il20rb-/- mice were more susceptible to experimental DSS-induced colitis. IL-20 deficiency was associated with increased IFN/STAT2 activity in mice and IFN/STAT2-induced necroptotic cell death in IEC-derived organoids could be markedly blocked by IL-20. Moreover, newly generated Stat2ΔIEC mice, lacking STAT2 in IECs, were less susceptible to experimental colitis compared with wildtype controls and the administration of IL-20 suppressed colitis activity in wildtype animals. CONCLUSION: IL-20 controls colitis and mucosal healing by interfering with the IFN/STAT2 death signalling pathway in IECs. These results indicate new directions for suppressing gut inflammation by modulating IL-20-controlled STAT2 signals.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Animais , Camundongos , Mucosa Intestinal/metabolismo , Colite/metabolismo , Interleucinas/metabolismo , Inflamação/metabolismo , Células Epiteliais/metabolismo , Doenças Inflamatórias Intestinais/genética , Sulfato de Dextrana/farmacologia , Camundongos Endogâmicos C57BL , Fator de Transcrição STAT2/metabolismo
2.
Gut ; 73(10): 1618-1631, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-38684238

RESUMO

OBJECTIVE: Mutations in presenilin genes are the major cause of Alzheimer's disease. However, little is known about their expression and function in the gut. In this study, we identify the presenilins Psen1 and Psen2 as key molecules that maintain intestinal homoeostasis. DESIGN: Human inflammatory bowel disease (IBD) and control samples were analysed for Psen1 expression. Newly generated intestinal epithelium-specific Psen1-deficient, Psen2-deficient and inducible Psen1/Psen2 double-deficient mice were used to dissect the functional role of presenilins in intestinal homoeostasis. RESULTS: Psen1 expression was regulated in experimental gut inflammation and in patients with IBD. Induced deletion of Psen1 and Psen2 in mice caused rapid weight loss and spontaneous development of intestinal inflammation. Mice exhibited epithelial barrier disruption with bacterial translocation and deregulation of key pathways for nutrient uptake. Wasting disease was independent of gut inflammation and dysbiosis, as depletion of microbiota rescued Psen-deficient animals from spontaneous colitis development but not from weight loss. On a molecular level, intestinal epithelial cells lacking Psen showed impaired Notch signalling and dysregulated epithelial differentiation. CONCLUSION: Overall, our study provides evidence that Psen1 and Psen2 are important guardians of intestinal homoeostasis and future targets for barrier-promoting therapeutic strategies in IBD.


Assuntos
Doença de Alzheimer , Homeostase , Mucosa Intestinal , Presenilina-1 , Presenilina-2 , Animais , Camundongos , Presenilina-2/genética , Presenilina-2/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/genética , Humanos , Presenilina-1/genética , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/genética , Microbioma Gastrointestinal/fisiologia , Camundongos Knockout , Células Epiteliais/metabolismo , Transdução de Sinais , Disbiose , Modelos Animais de Doenças
3.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255939

RESUMO

Asthma is a multifactorial condition that can be associated with obesity. The phenotypes of asthma in lean and obese patients are different, with proinflammatory signatures being further elevated in the latter. Both obesity and asthma are associated with alterations in intestinal barrier function and immunity, and with the composition of the intestinal microbiota and food consumption. In this study, we aimed to establish an organoid model to test the hypothesis that the intestinal content of lean and obese, allergic, asthmatic children differentially regulates epithelial intestinal gene expression. A model of mouse jejunum intestinal organoids was used. A group of healthy, normal-weight children was used as a control. The intestinal content of asthmatic obese children differentially induced the expression of inflammatory and mitochondrial response genes (Tnf-tumor necrosis factor, Cd14, Muc13-mucin 13, Tff2-Trefoil factor 2 and Tff3, Cldn1-claudin 1 and 5, Reg3g-regenerating family member 3 gamma, mt-Nd1-NADH dehydrogenase 1 and 6, and mt-Cyb-mitochondrial cytochrome b) via the RAGE-advanced glycosylation end product-specific receptor, NF-κB-nuclear factor kappa b and AKT kinase signal transduction pathways. Fecal homogenates from asthmatic normal-weight and obese children induce a differential phenotype in intestinal organoids, in which the presence of obesity plays a major role.


Assuntos
Asma , Obesidade Infantil , Criança , Animais , Camundongos , Humanos , Fezes , Claudina-1 , Citocromos b , NF-kappa B
4.
Gut ; 72(6): 1155-1166, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36261293

RESUMO

OBJECTIVE: Psen1 was previously characterised as a crucial factor in the pathogenesis of neurodegeneration in patients with Alzheimer's disease. Little, if any, is known about its function in the gut. Here, we uncovered an unexpected functional role of Psen1 in gut epithelial cells during intestinal tumourigenesis. DESIGN: Human colorectal cancer (CRC) and control samples were investigated for PSEN1 and proteins of theγ-secretase complex. Tumour formation was analysed in the AOM-DSS and Apc min/+ mouse models using newly generated epithelial-specific Psen1 deficient mice. Psen1 deficient human CRC cells were studied in a xenograft tumour model. Tumour-derived organoids were analysed for growth and RNA-Seq was performed to identify Psen1-regulated pathways. Tumouroids were generated to study EGFR activation and evaluation of the influence of prostanoids. RESULTS: PSEN1 is expressed in the intestinal epithelium and its level is increased in human CRC. Psen1-deficient mice developed only small tumours and human cancer cell lines deficient in Psen1 had a reduced tumourigenicity. Tumouroids derived from Psen1-deficient Apc min/+ mice exhibited stunted growth and reduced cell proliferation. On a molecular level, PSEN1 potentiated tumour cell proliferation via enhanced EGFR signalling and COX-2 production. Exogenous administration of PGE2 reversed the slow growth of PSEN1 deficient tumour cells via PGE2 receptor 4 (EP4) receptor signalling. CONCLUSIONS: Psen1 drives tumour development by increasing EGFR signalling via NOTCH1 processing, and by activating the COX-2-PGE2 pathway. PSEN1 inhibition could be a useful strategy in treatment of CRC.


Assuntos
Neoplasias Colorretais , Transdução de Sinais , Humanos , Camundongos , Animais , Ciclo-Oxigenase 2/metabolismo , Presenilina-1/genética , Transdução de Sinais/fisiologia , Neoplasias Colorretais/patologia , Receptores de Prostaglandina E Subtipo EP4/metabolismo , Modelos Animais de Doenças , Receptores ErbB/metabolismo
5.
Am J Physiol Gastrointest Liver Physiol ; 321(2): G157-G170, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34132111

RESUMO

The role of leptin in the development of intestinal inflammation remains controversial, since proinflammatory and anti-inflammatory effects have been described. This study describes the effect of the absence of leptin signaling in intestinal inflammation. Experimental colitis was induced by intrarectal administration of trinitrobenzene sulfonic acid (TNBS) to lean and obese Zucker rats (n = 10). Effects on inflammation and mucosal barrier were studied. Bacterial translocation and LPS concentration were evaluated together with colonic permeability to 4-kDa FITC-dextran. Obese Zucker rats showed a lower intestinal myeloperoxidase and alkaline phosphatase activity, reduced alkaline phosphatase sensitivity to levamisole, and diminished colonic expression of Nos2, Tnf, and Il6, indicating attenuated intestinal inflammation, associated with attenuated STAT3, AKT, and ERK signaling in the colonic tissue. S100a8 and Cxcl1 mRNA levels were maintained, suggesting that in the absence of leptin signaling neutrophil activation rather than infiltration is hampered. Despite the lower inflammatory response, leptin resistance enhanced intestinal permeability, reflecting an increased epithelial damage. This was shown by augmented LPS presence in the portal vein of colitic obese Zucker rats, associated with induction of tissue nonspecific alkaline phosphatase, LPS-binding protein, and CD14 hepatic expression (involved in LPS handling). This was linked to decreased ZO-1 immunoreactivity in tight junctions and lower occludin expression. Our results indicate that obese Zucker rats present an attenuated inflammatory response to TNBS, but increased intestinal epithelial damage allowing the passage of bacterial antigens.NEW & NOTEWORTHY Obese Zucker rats, which are resistant to leptin, exhibit a diminished inflammatory response in the trinitrobenzenesulfonic acid (TNBS) model of colitis, suggesting leptin role is proinflammatory. At the same time, obese Zucker rats present a debilitated intestinal barrier function, with increased translocation of LPS. Zucker rats present a dual response in the TNBS model of rat colitis.


Assuntos
Colite Ulcerativa/metabolismo , Mucosa Intestinal/metabolismo , Leptina/metabolismo , Lipopolissacarídeos/farmacologia , Fosfatase Alcalina/metabolismo , Animais , Calgranulina A/metabolismo , Quimiocina CXCL1/metabolismo , Colite Ulcerativa/etiologia , Colite Ulcerativa/patologia , Interleucina-6/genética , Interleucina-6/metabolismo , Absorção Intestinal , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Sistema de Sinalização das MAP Quinases , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Peroxidase/metabolismo , Ratos , Ratos Zucker , Receptores para Leptina/deficiência , Receptores para Leptina/genética , Fator de Transcrição STAT3/metabolismo , Proteínas de Junções Íntimas/metabolismo , Ácido Trinitrobenzenossulfônico/toxicidade , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
6.
Int J Mol Sci ; 21(24)2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33371444

RESUMO

The gut is among the most complex organs of the human body. It has to exert several functions including food and water absorption while setting up an efficient barrier to the outside world. Dysfunction of the gut can be life-threatening. Diseases of the gastrointestinal tract such as inflammatory bowel disease, infections, or colorectal cancer, therefore, pose substantial challenges to clinical care. The intestinal epithelium plays an important role in intestinal disease development. It not only establishes an important barrier against the gut lumen but also constantly signals information about the gut lumen and its composition to immune cells in the bowel wall. Such signaling across the epithelial barrier also occurs in the other direction. Intestinal epithelial cells respond to cytokines and other mediators of immune cells in the lamina propria and shape the microbial community within the gut by producing various antimicrobial peptides. Thus, the epithelium can be considered as an interpreter between the microbiota and the mucosal immune system, safeguarding and moderating communication to the benefit of the host. Type 2 immune responses play important roles in immune-epithelial communication. They contribute to gut tissue homeostasis and protect the host against infections with helminths. However, they are also involved in pathogenic pathways in inflammatory bowel disease and colorectal cancer. The current review provides an overview of current concepts regarding type 2 immune responses in intestinal physiology and pathophysiology.


Assuntos
Sistema Imunitário/imunologia , Inflamação/complicações , Intestinos/patologia , Neoplasias/patologia , Células Th2/imunologia , Animais , Humanos , Intestinos/imunologia , Neoplasias/etiologia
7.
Int J Mol Sci ; 22(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374541

RESUMO

The liver expresses tissue-nonspecific alkaline phosphatase (TNAP), which may participate in the defense against bacterial components, in cell regulation as part of the purinome or in bile secretion, among other roles. We aimed to study the role of TNAP in the development of hepatosteatosis. TNAP+/- haplodeficient and wild type (WT) mice were fed a control diet (containing 10% fat w/w) or the same diet deficient in methionine and choline (MCD diet). The MCD diet induced substantial weight loss together with hepatic steatosis and increased alanine aminotransferase (ALT) plasma levels, but no differences in IL-6, TNF, insulin or resistin. There were no substantial differences between TNAP+/- and WT mice fed the MCD diet. In turn, TNAP+/- mice receiving the control diet presented hepatic steatosis with alterations in metabolic parameters very similar to those induced by the MCD diet. Nevertheless, no weight loss, increased ALT plasma levels or hypoglycemia were observed. These mice also presented increased levels of liver TNF and systemic resistin and glucagon compared to WT mice. The phenotype of TNAP+/- mice fed a standard diet was normal. In conclusion, TNAP haplodeficiency induces steatosis comparable to that produced by a MCD diet when fed a control diet.


Assuntos
Fosfatase Alcalina/deficiência , Colina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Metionina/metabolismo , Fosfatase Alcalina/metabolismo , Alelos , Animais , Deficiência de Colina , Dieta , Modelos Animais de Doenças , Ativação Enzimática , Metionina/deficiência , Camundongos , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , PPAR alfa/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
8.
J Sci Food Agric ; 100(7): 2880-2888, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32020613

RESUMO

BACKGROUND: Brewers' spent grain (BSG) is a relevant, protein-rich by-product of the brewing process. Protein hydrolysates from different sources exert immune-regulatory actions activating toll-like receptors (TLRs), nuclear factor kappa B (NFκB), and mitogen-activated protein kinases (MAPKs). Effects of gastrointestinal digestion have been poorly studied. Here, we studied the immune-regulatory effect of BSG hydrolysates, and their in-vitro-digested products, on rat splenocytes, macrophages, and T lymphocytes RESULTS: In primary cultures of rat spleen cells, BSG hydrolysates induced interleukin 10 and tumor necrosis factor production in basal conditions. Under stimulation with lipopolysaccharide or concanavalin A, hydrolysates further induced interleukin 10 production. Tumor necrosis factor and interferon-γ were inhibited in lipopolysaccharide- and concanavalin-A-stimulated cells respectively. In vitro gastrointestinal digestion attenuated the observed effects. Splenic macrophages and T lymphocytes behaved in a similar fashion. In spleen cells from TLR2-/- and TLR4-/- mice, immune-regulatory effects were greatly reduced or abrogated. The study of signal transduction pathways indicated a major involvement of NFκB, and the contribution of MAPKs p38, c-Jun N-terminal kinase, and extracellular signal-regulated kinases 1 and 2. CONCLUSION: BSG hydrolysates, like those obtained from other food sources, regulate the immune response, involving TLR2 and TLR4 and the activation of NFκB and MAPKs, an effect partly maintained after in vitro gastrointestinal digestion. Our data support the hypothesis of a shared, rather unspecific, mechanism of action of protein hydrolysates. © 2020 Society of Chemical Industry.


Assuntos
Citocinas/metabolismo , Grão Comestível/química , Fatores Imunológicos/metabolismo , Hidrolisados de Proteína/farmacologia , Animais , Células Cultivadas , Digestão , Feminino , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/metabolismo , Proteínas de Plantas/química , Ratos Wistar , Baço/efeitos dos fármacos , Baço/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Receptores Toll-Like/metabolismo
9.
Pflugers Arch ; 470(11): 1705-1717, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30094477

RESUMO

One of the cardinal symptoms of intestinal inflammation is diarrhea. Acute intestinal inflammation is associated with inhibition of ion absorption and increased secretion, along with fluid leakage due to epithelial injury and changes in permeability. However, in the chronic situation, a downregulation of both absorptive and secretory transport has been reported. We investigated how experimental colitis reduces cAMP levels in intestinal epithelial cells through modulation of adenylyl cyclases (AC). Primary colonic epithelial cells obtained from rats with trinitrobenzenesulfonic acid colitis and non-colitic controls were analyzed for AC expression by RT-qPCR and Western blot, following a preliminary microarray analysis. AC6 and AC5 were found to be expressed in colonocytes, and downregulated by inflammation, with the former exhibiting considerably higher mRNA levels in both cases. To test the hypothesis that inflammatory cytokines may account for this effect, Caco 2 cells were treated with IL-1ß, TNF-α, or IFN-γ. All three cytokines inhibited forskolin evoked short-circuit currents in Ussing chambers and lowered intracellular cAMP, but failed to alter AC6 mRNA levels. AC5/AC6 expression was however inhibited in mouse jejunal organoids treated with IFN-γ and TNF-α, but not IL-1ß. Gene knockdown of AC6 resulted in a significant decrease of ion secretion in T84 cells. We conclude that the disturbances in ion secretion observed in rat TNBS colitis are associated with low intracellular levels of cAMP in the epithelium, which may be explained in part by the downregulation of AC5/AC6 expression by proinflammatory cytokines.


Assuntos
Adenilil Ciclases/metabolismo , Colite/metabolismo , Secreções Intestinais , Adenilil Ciclases/genética , Animais , Células CACO-2 , Células Cultivadas , AMP Cíclico/metabolismo , Citocinas/farmacologia , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Feminino , Células HEK293 , Humanos , Transporte de Íons , Jejuno/citologia , Jejuno/efeitos dos fármacos , Jejuno/metabolismo , Camundongos , Ratos , Ratos Wistar
10.
Pharmacol Res ; 133: 251-264, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29428205

RESUMO

Biosimilars are copies of reference biological drugs, developed as the patents for original biologicals expire. They are thus developed to replicate an original biological medicine just a generics are intended to replicate a chemically-synthesized medicine; however, there are important technical and regulatory differences between the two. Unlike chemical drugs, molecular identity cannot generally be established for any two biological drugs. Accordingly, their pharmacological properties cannot be assumed to be the same. This is due to the complexity of the production of biologicals and to the presence of minor natural variations in the molecular structure (collectively known as microheterogeneity). Further, biological production yields slightly different versions of the drug over time, particularly when changes are introduced in the production process. In this case the prechange and postchange versions of the biological are analyzed in what is called a comparability exercise. The comparable versions thus validated are considered not to have any significant differences at the clinical level. Likewise, biosimilars are not identical copies but comparable versions of the original biological drug, also validated through a comparability exercise, although of a much broader scope. Although current knowledge about biosimilars has increased significantly, they still arise a number of controversies and misconceptions, particularly regarding issues like extrapolation of indications, immunogenicity and substitution. This review deals with concepts and controversies in the biosimilar field.


Assuntos
Medicamentos Biossimilares , Humanos
11.
Mar Drugs ; 16(7)2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-29997311

RESUMO

Hydrolysates of food protein sources have immunomodulatory effects, which are of interest for use as functional foods. In this study, we have characterized the immune regulatory effect on rat splenocytes, macrophages and T lymphocytes of Ulva spp. hydrolysates and their peptide fractions with or without in vitro gastrointestinal digestion and/or ultrafiltration. IL-10 was induced in almost all conditions and cell types obtained from wild type animals. The induction was in general increased by ultrafiltration and in vitro gastrointestinal digestion. TNF was also induced in basal conditions. In turn, TNF and IFN-γ production was attenuated by the hydrolysate products in lipopolysaccharide or concanavalin A immune stimulated cells. Inhibitors for the activation of NFκB, MAPK p38 and JNK inhibited IL-10 induction in rat splenocytes. The response was dramatically attenuated in TLR4-/- cells, and only modestly in TLR2-/- cells. Food peptides from Ulva spp. genus exert anti-inflammatory effects in immune cells mediated by TLR4 and NFκB. Similarity with the immunomodulatory profile of protein hydrolysates from other sources suggests a common mechanism.


Assuntos
Citocinas/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Peptídeos/farmacologia , Hidrolisados de Proteína/farmacologia , Ulva/química , Animais , Células Cultivadas , Feminino , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Peptídeos/isolamento & purificação , Cultura Primária de Células , Hidrolisados de Proteína/isolamento & purificação , Ratos , Ratos Wistar , Baço/citologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
12.
Gastroenterology ; 160(3): 925-928.e4, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33075345
13.
Front Cell Dev Biol ; 11: 1213383, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37645250

RESUMO

The development of inflammatory bowel diseases (IBD) involves the breakdown of two barriers: the epithelial barrier and the gut-vascular barrier (GVB). The destabilization of each barrier can promote initiation and progression of the disease. Interestingly, first evidence is available that both barriers are communicating through secreted factors that may accordingly serve as targets for therapeutic modulation of barrier functions. Interferon (IFN)-γ is among the major pathogenesis factors in IBD and can severely impair both barriers. In order to identify factors transmitting signals from the GVB to the epithelial cell barrier, we analyzed the secretome of IFN-γ-treated human intestinal endothelial cells (HIEC). To this goal, HIEC were isolated in high purity from normal colon tissues. HIEC were either untreated or stimulated with IFN-γ (10 U/mL). After 48 h, conditioned media (CM) were harvested and subjected to comparative hyper reaction monitoring mass spectrometry (HRM™ MS). In total, 1,084 human proteins were detected in the HIEC-CM. Among these, 43 proteins were present in significantly different concentrations between the CM of IFN-γ- and control-stimulated HIEC. Several of these proteins were also differentially expressed in various murine colitis models as compared to healthy animals supporting the relevance of these proteins secreted by inflammatory activated HIEC in the inter-barrier communication in IBD. The angiocrine pathogenic impact of these differentially secreted HIEC proteins on the epithelial cell barrier and their perspectives as targets to treat IBD by modulation of trans-barrier communication is discussed in detail.

14.
Cancers (Basel) ; 14(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36077828

RESUMO

For quite a long time, necrosis was considered a chaotic and unorganized form of cell death. However, studies conducted during the past few decades unveiled multiple types of programmed necrosis, such as necroptosis, pyroptosis and ferroptosis. These types of programmed necrosis have been shown to play crucial roles in mediating pathological processes, including tumorigenesis. Almost all key mediators, such as RIPK3 and MLKL in necroptosis, GSDMD and caspase 1/11 in pyroptosis and GPX4 in ferroptosis, are highly expressed in intestinal epithelial cells (IECs). An aberrant increase or decrease in programmed necrosis in IECs has been connected to intestinal disorders. Here, we review the pathways of programmed necrosis and the specific consequences of regulated necrosis in colorectal cancer (CRC) development. Translational aspects of programmed necrosis induction as a novel therapeutic alternative against CRC are also discussed.

15.
Front Pediatr ; 8: 627475, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33537270

RESUMO

Introduction: Prematurity, a well-established risk factor for various intestinal diseases in newborns, results in increased morbidity and mortality. However, the intestinal inflammatory status of preterm (PT) infants has been poorly characterized. Here we have broadly described the intestinal and systemic inflammatory status of PT children. Materials and Methods: Meconium and plasma from 39 PT and 32 full term (T) newborns were studied. Fecal calprotectin, polymorphonuclear leukocyte elastase (PMN-E), TNF, IL-17A, IL-8, IP-10, MCP-1, MIP-1, IL-1ß, IL-1α, and E-selectin and the enzymatic activities of myeloperoxidase (MPO) and alkaline phosphatase (AP) in meconium were measured. Plasma levels of AP, hepatocyte growth factor, nerve growth factor (NGF), proinflammatory cytokines, leptin, adiponectin, PAI-1, and resistin were also determined. Correlations with gestational age (GA) and birth weight (BW) were studied. Results: Neutrophil derived PMN-E, MPO and calprotectin were increased in the meconium of PT compared to T newborns, while AP was decreased. No significant differences were found in other inflammatory parameters. Considering data from all children, GA and BW showed inverse correlation with neutrophil markers, while AP directly correlated with BW. Plasma levels of IL-1ß and NGF were enhanced in PT infants, and were also negatively correlated with BW. PT children additionally showed neutropenia and decreased adiponectin, leptin, haematocrit, and haemoglobin. These parameters (neutrophils, adiponectin, and so forth) were positively correlated with GA and BW, while IL-8, MCP-1, PAI-1, and plasma AP were negatively correlated. PT children showing postnatal morbidity exhibited increased meconium MPO and MIP-1α. Conclusion: PT neonates present a significant elevation of intestinal inflammatory parameters, characterized by the presence of neutrophil markers, associated with mild systemic inflammation.

16.
Biochim Biophys Acta Mol Basis Dis ; 1864(11): 3769-3779, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30251694

RESUMO

Tissue nonspecific alkaline phosphatase (TNAP) has a well established role in bone homeostasis and in hepatic/biliary conditions. In addition, TNAP is expressed in the inflamed intestine and is relevant to T and B lymphocyte function. TNAP KO mice are only viable for a few days, but TNAP+/- haplodeficient mice are viable. Acute pancreatitis was induced by repeated caerulein injection in WT and TNAP+/- mice. TNAP+/- mice presented an increased expression of Cxcl2, Ccl2, Selplg (P-selectin ligand), Il6 and Il1b in the pancreas. Freshly isolated acinar cells showed a dramatic upregulation of Cxcl1, Cxcl2, Ccl2, Il6, Selpg or Bax in both pancreatitis groups. TNAP+/- cells displayed a 2-fold higher expression of Cxcl2, and a smaller increase in Il6. These findings could be partly replicated by in vitro treatment of primary acinar cells with caerulein. Furthermore, the proinflammatory effect on acinar cells could be partially reproduced in wild type cells treated with the TNAP inhibitor levamisole. TNAP mRNA levels were also markedly upregulated by pancreatitis in acinar cells. Neutrophil infiltration (MRP8+ cells) and activation (IL-6 and TNF production in LPS treated primary neutrophils) were increased in TNAP+/- vs WT mice. Neutrophil depletion greatly attenuated inflammation, indicating that this cell type is mainly responsible for the higher inflammatory status of TNAP+/- mice. In conclusion, our results show that altered TNAP expression results in heightened pancreatic inflammation, which may be explained by an augmented response of neutrophils and by a higher sensitivity of acinar cells to caerulein injury.


Assuntos
Células Acinares/patologia , Fosfatase Alcalina/deficiência , Neutrófilos/patologia , Pancreatite/patologia , Células Acinares/efeitos dos fármacos , Fosfatase Alcalina/antagonistas & inibidores , Fosfatase Alcalina/genética , Animais , Ceruletídeo/toxicidade , Modelos Animais de Doenças , Humanos , Levamisol/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neutrófilos/efeitos dos fármacos , Pâncreas/citologia , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Pancreatite/induzido quimicamente , RNA Mensageiro/metabolismo , Regulação para Cima
17.
Sci Rep ; 8(1): 17350, 2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30478292

RESUMO

Regulation of miR-146a abundance and its role in intestinal inflammation and particularly in intestinal epithelial cells (IECs) has been poorly studied. Here we study the relationship between bacterial antigens and inflammatory stimuli, and miR-146a expression using IEC lines and models of colitis (trinitrobenzenesulfonic acid (TNBS), dextran sulfate sodium (DSS) and the CD4 + CD62L + T cell transfer model). Specific bacterial antigens and cytokines (LPS, flagelin and IL-1ß/TNF) stimulate miR-146a expression, while peptidoglycan, muramyldipeptide and CpG DNA have no effect. Overexpression of miR-146a by LPS depends on the activation of the TLR4/MyD88/NF-kB and Akt pathways. Accordingly, the induction of miR-146a is lower in TLR4, but not in TLR2 knock out mice in both basal and colitic conditions. miR-146a overexpression in IECs induces immune tolerance, inhibiting cytokine production (MCP-1 and GROα/IL-8) in response to LPS (IEC18) or IL-1ß (Caco-2). Intestinal inflammation induced by chemical damage to the epithelium (DSS and TNBS models) induces miR-146a, but no effect is observed in the lymphocyte transfer model. Finally, we found that miR-146a expression is upregulated in purified IECs from villi vs. crypts. Our results indicate that miR-146a is a key molecule in the interaction among IECs, inflammatory stimuli and the microbiota.


Assuntos
Colite/genética , Microbioma Gastrointestinal/genética , Intestinos/citologia , MicroRNAs/genética , Animais , Linhagem Celular , Colite/induzido quimicamente , Colite/imunologia , Colite/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Feminino , Flagelina/toxicidade , Proteínas de Homeodomínio/genética , Humanos , Intestinos/microbiologia , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Ratos Wistar , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
18.
J Crohns Colitis ; 11(7): 857-870, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28039309

RESUMO

BACKGROUND AND AIMS: Two alkaline phosphatase isoforms, intestinal [IAP] and tissue non-specific alkaline phosphatase [TNAP], are coexpressed in mouse colon, with the latter predominating in colitis. We aimed to examine the role of TNAP in T lymphocytes, using heterozygous TNAP+/- mice [as TNAP-/- mice are non-viable]. METHODS: In vitro primary cultures and in vivo T cell models using TNAP+/- mice were used. RESULTS: Stimulated splenocytes [lipopolysaccharide and concanavalin A] and T lymphocytes [concanavalin A and a-CD3/a-CD28] showed a decreased cytokine production and expression when compared with wild-type [WT] cells. Decreased T cell activation was reproduced by the TNAP inhibitors levamisole, theophylline, and phenylalanine in WT cells. Intraperitoneal administration of anti-CD3 in vivo resulted in reduced plasma cytokine levels, and decreased activation of splenocytes and T cells ex vivo in TNAP+/- mice. We further tested the hypothesis that TNAP expressed in T lymphocytes is involved in T cell activation and inflammation, using the lymphocyte transfer model of colitis. Rag1-/- mice were transferred with T naïve cells [CD4+ CD62L+] from TNAP+/- or WT mice and developed colitis, which was attenuated in the group receiving TNAP+/- cells. Compared with WT, T cells from TNAP+/- mice showed a decreased capacity for proliferation, with no change in differentiation. CONCLUSIONS: Our results offer clear evidence that TNAP modulates T lymphocyte function and specifically T cell-dependent colitis. This was associated with distinct changes in the type of TNAP expressed, probably because of changes in glycosylation.


Assuntos
Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Colite/imunologia , Colite/metabolismo , Inibidores Enzimáticos/farmacologia , Linfócitos T/metabolismo , Fosfatase Alcalina/antagonistas & inibidores , Animais , Proliferação de Células/genética , Colite/patologia , Citocinas/metabolismo , Expressão Gênica , Heterozigoto , Proteínas de Homeodomínio/genética , Levamisol/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenilalanina/farmacologia , Cultura Primária de Células , RNA Mensageiro/metabolismo , Baço/citologia , Teofilina/farmacologia
19.
Mol Nutr Food Res ; 61(8)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28463404

RESUMO

We investigated the effect of a high fructose diet (HFD) on Sprague Dawley rats and the impact of a synbiotic composed of Lactobacillus fermentum CECT5716 and fructooligosaccharides. Feeding the HFD for 5 weeks resulted in liver steatosis and insulin resistance but not obesity. These changes were associated with increased production of short-chain fatty acids and increased Bacteroidetes in feces, with an augmented Bacteroidetes/Firmicutes ratio, among other changes in the microbiota. In addition, barrier function was weakened, with increased LPS plasma levels. These data are consistent with increased fructose availability in the distal gut due to saturation of absorptive mechanisms, leading to dysbiosis, endotoxemia, hepatic steatosis, and insulin resistance. Treatment with the synbiotic prevented some of the pathological effects, so that treated rats did not develop steatosis or systemic inflammation, while dysbiosis and barrier function were greatly ameliorated. In addition, the synbiotic had hypolipidemic effects. The synbiotic composed by L. fermentum CECT5716 and fructooligosaccharides has beneficial effects in a model of metabolic syndrome induced by a HFD, suggesting it might be clinically useful in this type of condition, particularly considering that high fructose intake has been related to metabolic syndrome in humans.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Limosilactobacillus fermentum , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Oligossacarídeos/farmacologia , Simbióticos , Animais , Dieta , Modelos Animais de Doenças , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos Voláteis/metabolismo , Frutose/efeitos adversos , Microbioma Gastrointestinal/fisiologia , Resistência à Insulina , Masculino , Síndrome Metabólica/dietoterapia , Síndrome Metabólica/etiologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Ratos Sprague-Dawley , Receptores de Adiponectina/metabolismo
20.
Biochem Pharmacol ; 116: 73-88, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27431777

RESUMO

Glucocorticoids are widely used for the management of inflammatory bowel disease, albeit with known limitations for long-term use and relevant adverse effects. In turn, they have harmful effects in experimental colitis. We aimed to explore the mechanism and possible implications of this phenomenon. Regular and microbiota depleted C57BL/6 mice were exposed to dextran sulfate sodium (DSS) to induce colitis and treated with budesonide. Colonic inflammation and animal status were compared. In vitro epithelial models of wound healing were used to confirm the effects of glucocorticoids. Budesonide was also tested in lymphocyte transfer colitis. Budesonide (1-60µg/day) exerted substantial colonic antiinflammatory effects in DSS colitis. At the same time, it aggravated body weight loss, increased rectal bleeding, and induced general deterioration of animal status, bacterial translocation and endotoxemia. As a result, there was an associated increase in parameters of sepsis, such as plasma NOx, IL-1ß, IL-6, lung myeloperoxidase and iNOS, as well as significant hypothermia. Budesonide also enhanced DSS induced colonic damage in microbiota depleted mice. These effects were correlated with antiproliferative effects at the epithelial level, which are expected to impair wound healing. In contrast, budesonide had significant but greatly diminished deleterious effects in noncolitic mice or in mice with lymphocyte transfer colitis. We conclude that budesonide weakens mucosal barrier function by interfering with epithelial dynamics and dampening the immune response in the context of significant mucosal injury, causing sepsis. This may be a contributing factor, at least in part, limiting clinical usefulness of corticoids in inflammatory bowel disease.


Assuntos
Anti-Inflamatórios/uso terapêutico , Budesonida/uso terapêutico , Modelos Animais de Doenças , Fármacos Gastrointestinais/uso terapêutico , Glucocorticoides/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/efeitos adversos , Translocação Bacteriana/efeitos dos fármacos , Biomarcadores/sangue , Budesonida/administração & dosagem , Budesonida/efeitos adversos , Colo/efeitos dos fármacos , Colo/imunologia , Colo/microbiologia , Colo/patologia , Sulfato de Dextrana , Relação Dose-Resposta a Droga , Disbiose/induzido quimicamente , Disbiose/etiologia , Disbiose/prevenção & controle , Endotoxemia/induzido quimicamente , Endotoxemia/etiologia , Endotoxemia/prevenção & controle , Feminino , Fármacos Gastrointestinais/administração & dosagem , Fármacos Gastrointestinais/efeitos adversos , Hemorragia Gastrointestinal/induzido quimicamente , Hemorragia Gastrointestinal/etiologia , Hemorragia Gastrointestinal/prevenção & controle , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/patologia , Doenças Inflamatórias Intestinais/fisiopatologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organismos Livres de Patógenos Específicos , Redução de Peso/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA