Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Plant Cell ; 33(4): 1229-1251, 2021 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-33693903

RESUMO

Flowers are the core reproductive structures and key distinguishing features of angiosperms. Flower opening to expose stamens and gynoecia is important in cases where pollinators much be attracted to promote cross-pollination, which can enhance reproductive success and species preservation. The floral opening process is accompanied by the coordinated movement of various floral organs, particularly petals. However, the mechanisms underlying petal movement and flower opening are not well understood. Here, we integrated anatomical, physiological, and molecular approaches to determine the petal movement regulatory network using rose (Rosa hybrida) as a model. We found that PETAL MOVEMENT-RELATED PROTEIN1 (RhPMP1), a homeodomain transcription factor (TF) gene, is a direct target of ETHYLENE INSENSITIVE3, a TF that functions downstream of ethylene signaling. RhPMP1 expression was upregulated by ethylene and specifically activated endoreduplication of parenchyma cells on the adaxial side of the petal (ADSP) base by inducing the expression of RhAPC3b, a gene encoding the core subunit of the Anaphase-Promoting Complex. Cell expansion of the parenchyma on the ADSP base was subsequently enhanced, thus resulting in asymmetric growth of the petal base, leading to the typical epinastic movement of petals and flower opening. These findings provide insights into the pathway regulating petal movement and associated flower-opening mechanisms.�.


Assuntos
Etilenos/metabolismo , Flores/crescimento & desenvolvimento , Rosa/crescimento & desenvolvimento , Ciclopropanos/farmacologia , Etilenos/farmacologia , Flores/efeitos dos fármacos , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Células Vegetais/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Rosa/efeitos dos fármacos , Rosa/genética , Rosa/metabolismo
2.
Plant Cell ; 33(8): 2716-2735, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34043798

RESUMO

Reactive oxygen species (ROS) are unstable reactive molecules that are toxic to cells. Regulation of ROS homeostasis is crucial to protect cells from dysfunction, senescence, and death. In plant leaves, ROS are mainly generated from chloroplasts and are tightly temporally restricted by the circadian clock. However, little is known about how ROS homeostasis is regulated in nonphotosynthetic organs, such as petals. Here, we showed that hydrogen peroxide (H2O2) levels exhibit typical circadian rhythmicity in rose (Rosa hybrida) petals, consistent with the measured respiratory rate. RNA-seq and functional screening identified a B-box gene, RhBBX28, whose expression was associated with H2O2 rhythms. Silencing RhBBX28 accelerated flower senescence and promoted H2O2 accumulation at night in petals, while overexpression of RhBBX28 had the opposite effects. RhBBX28 influenced the expression of various genes related to respiratory metabolism, including the TCA cycle and glycolysis, and directly repressed the expression of SUCCINATE DEHYDROGENASE 1, which plays a central role in mitochondrial ROS (mtROS) homeostasis. We also found that PHYTOCHROME-INTERACTING FACTOR8 (RhPIF8) could activate RhBBX28 expression to control H2O2 levels in petals and thus flower senescence. Our results indicate that the circadian-controlled RhPIF8-RhBBX28 module is a critical player that controls flower senescence by governing mtROS homeostasis in rose.


Assuntos
Flores/fisiologia , Mitocôndrias/metabolismo , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rosa/fisiologia , Ritmo Circadiano/fisiologia , Regulação da Expressão Gênica de Plantas , Homeostase , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/genética , Proteínas de Plantas/genética , Senescência Vegetal , Plantas Geneticamente Modificadas , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo
3.
New Phytol ; 239(3): 964-978, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37282811

RESUMO

The vascular cambium is the main secondary meristem in plants that produces secondary phloem (outside) and xylem (inside) on opposing sides of the cambium. The phytohormone ethylene has been implicated in vascular cambium activity, but the regulatory network underlying ethylene-mediated cambial activity remains to be elucidated. Here, we found that PETAL MOVEMENT-RELATED PROTEIN1 (RhPMP1), an ethylene-inducible HOMEODOMAIN-LEUCINE ZIPPER I transcription factor in woody plant rose (Rosa hybrida), regulates local auxin biosynthesis and auxin transport to maintain cambial activity. Knockdown of RhPMP1 resulted in smaller midveins and reduced auxin content, while RhPMP1 overexpression resulted in larger midveins and increased auxin levels compared with the wild-type plants. Furthermore, we revealed that Indole-3-pyruvate monooxygenase YUCCA 10 (RhYUC10) and Auxin transporter-like protein 2 (RhAUX2), encoding an auxin biosynthetic enzyme and an auxin influx carrier, respectively, are direct downstream targets of RhPMP1. In summary, our results suggest that ethylene promotes an auxin maximum in the cambium adjacent to the xylem to maintain cambial activity.


Assuntos
Câmbio , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Etilenos/metabolismo , Xilema/metabolismo , Células-Tronco/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Plant Physiol ; 186(2): 1074-1087, 2021 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-33729501

RESUMO

The phytohormone auxin plays a pivotal role in floral meristem initiation and gynoecium development, but whether and how auxin controls floral organ identity remain largely unknown. Here, we found that auxin levels influence organ specification, and changes in auxin levels influence homeotic transformation between petals and stamens in rose (Rosa hybrida). The PIN-FORMED-LIKES (PILS) gene RhPILS1 governs auxin levels in floral buds during floral organogenesis. RhAUXIN RESPONSE FACTOR 18 (RhARF18), whose expression decreases with increasing auxin content, encodes a transcriptional repressor of the C-class gene RhAGAMOUS (RhAG), and controls stamen-petal organ specification in an auxin-dependent manner. Moreover, RhARF18 physically interacts with the histone deacetylase (HDA) RhHDA6. Silencing of RhHDA6 increases H3K9/K14 acetylation levels at the site adjacent to the RhARF18-binding site in the RhAG promoter and reduces petal number, indicating that RhARF18 might recruit RhHDA6 to the RhAG promoter to reinforce the repression of RhAG transcription. We propose a model for how auxin homeostasis controls floral organ identity via regulating transcription of RhAG.


Assuntos
Desacetilase 6 de Histona/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Rosa/genética , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Desacetilase 6 de Histona/genética , Homeostase , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Rosa/crescimento & desenvolvimento , Rosa/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Plant J ; 96(1): 22-38, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30086201

RESUMO

Grafting-induced variations have been observed in many plant species, but the heritability of variation in progeny is not well understood. In our study, adventitious shoots from the C cell lineage of shoot apical meristem (SAM) grafting chimera TCC (where the origin of the outmost, middle and innermost cell layers, respectively, of SAM is designated by 'T' for tuber mustard and 'C' for red cabbage) were induced and identified as r-CCC (r = regenerated). To investigate the maintenance of grafting variations during cell propagation and regeneration, different generations of asexual progeny (r-CCCn, n = generation) were established through successive regeneration of axillary shoots from r-CCC. The fourth generation of r-CCC (r-CCC4) was selected to perform whole genome bisulfite sequencing for comparative analysis of hetero-grafting-induced global methylation changes relative to r-s-CCC4 (s = self-grafting). Increased CHH methylation levels and proportions were observed in r-CCC4, with substantial changes occurring in the repeat elements. Small RNA sequencing revealed 1135 specific small interfering RNA (siRNA) tags that were typically expressed in r-CCC, r-CCC2 and r-CCC4. Notably, 65% of these specific siRNAs were associated with repeat elements, termed RE siRNAs. Subsequent analysis revealed that the CHH methylation of RE siRNA-overlapping regions was mainly hypermethylation in r-CCC4, indicating that they were responsible for directing and maintaining grafting-induced CHH methylation. Moreover, the expression of 13 differentially methylated genes (DMGs) correlated with the phenotypic variation, showing differential expression levels between r-CCC4 and r-s-CCC4. These DMGs were predominantly CG hypermethylated, their methylation modifications corresponded to the transcription of relative methyltransferase.


Assuntos
Brassica/fisiologia , Epigênese Genética , Reprodução Assexuada , Brassica/metabolismo , Metilação de DNA , Variação Genética , Meristema/fisiologia , Brotos de Planta/fisiologia
6.
Plant Physiol ; 175(3): 1082-1093, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28899963

RESUMO

The phytohormone salicylic acid (SA) plays essential roles in biotic and abiotic responses, plant development, and leaf senescence. 2,5-Dihydroxybenzoic acid (2,5-DHBA or gentisic acid) is one of the most commonly occurring aromatic acids in green plants and is assumed to be generated from SA, but the enzymes involved in its production remain obscure. DMR6 (Downy Mildew Resistant6; At5g24530) has been proven essential in plant immunity of Arabidopsis (Arabidopsis thaliana), but its biochemical properties are not well understood. Here, we report the discovery and functional characterization of DMR6 as a salicylic acid 5-hydroxylase (S5H) that catalyzes the formation of 2,5-DHBA by hydroxylating SA at the C5 position of its phenyl ring in Arabidopsis. S5H/DMR6 specifically converts SA to 2,5-DHBA in vitro and displays higher catalytic efficiency (Kcat/Km = 4.96 × 104 m-1 s-1) than the previously reported S3H (Kcat/Km = 6.09 × 103 m-1 s-1) for SA. Interestingly, S5H/DMR6 displays a substrate inhibition property that may enable automatic control of its enzyme activities. The s5h mutant and s5hs3h double mutant overaccumulate SA and display phenotypes such as a smaller growth size, early senescence, and a loss of susceptibility to Pseudomonas syringae pv tomato DC3000. S5H/DMR6 is sensitively induced by SA/pathogen treatment and is expressed widely from young seedlings to senescing plants, whereas S3H is more specifically expressed at the mature and senescing stages. Collectively, our results disclose the identity of the enzyme required for 2,5-DHBA formation and reveal a mechanism by which plants fine-tune SA homeostasis by mediating SA 5-hydroxylation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Homeostase , Oxigenases de Função Mista/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Gentisatos/química , Gentisatos/metabolismo , Cinética , Metabolômica , Oxigenases de Função Mista/genética , Fenótipo , Plantas Geneticamente Modificadas , Pseudomonas syringae/fisiologia , Proteínas Recombinantes/metabolismo , Ácido Salicílico/química , Especificidade da Espécie , Fatores de Tempo , Transcrição Gênica
7.
Proc Natl Acad Sci U S A ; 110(36): 14807-12, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-23959884

RESUMO

The plant hormone salicylic acid (SA) plays critical roles in plant defense, stress responses, and senescence. Although SA biosynthesis is well understood, the pathways by which SA is catabolized remain elusive. Here we report the identification and characterization of an SA 3-hydroxylase (S3H) involved in SA catabolism during leaf senescence. S3H is associated with senescence and is inducible by SA and is thus a key part of a negative feedback regulation system of SA levels during senescence. The enzyme converts SA (with a Km of 58.29 µM) to both 2,3-dihydroxybenzoic acid (2,3-DHBA) and 2,5-DHBA in vitro but only 2,3-DHBA in vivo. The s3h knockout mutants fail to produce 2,3-DHBA sugar conjugates, accumulate very high levels of SA and its sugar conjugates, and exhibit a precocious senescence phenotype. Conversely, the gain-of-function lines contain high levels of 2,3-DHBA sugar conjugates and extremely low levels of SA and its sugar conjugates and display a significantly extended leaf longevity. This research reveals an elegant SA catabolic mechanism by which plants regulate SA levels by converting it to 2,3-DHBA to prevent SA overaccumulation. The research also provides strong molecular genetic evidence for an important role of SA in regulating the onset and rate of leaf senescence.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Oxigenases de Função Mista/genética , Folhas de Planta/genética , Ácido Salicílico/metabolismo , Sequência de Aminoácidos , Arabidopsis/fisiologia , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/metabolismo , Biocatálise , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Gentisatos/química , Gentisatos/metabolismo , Hidroxibenzoatos/química , Hidroxibenzoatos/metabolismo , Cinética , Espectrometria de Massas , Oxigenases de Função Mista/classificação , Oxigenases de Função Mista/metabolismo , Dados de Sequência Molecular , Estrutura Molecular , Mutação , Filogenia , Folhas de Planta/química , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ácido Salicílico/farmacologia , Homologia de Sequência de Aminoácidos
8.
Int J Mol Sci ; 17(10)2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27690004

RESUMO

Red dragon fruit or red pitaya (Hylocereus polyrhizus) is the only edible fruit that contains betalains. The color of betalains ranges from red and violet to yellow in plants. Betalains may also serve as an important component of health-promoting and disease-preventing functional food. Currently, the biosynthetic and regulatory pathways for betalain production remain to be fully deciphered. In this study, isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analyses were used to reveal the molecular mechanism of betalain biosynthesis in H. polyrhizus fruits at white and red pulp stages, respectively. A total of 1946 proteins were identified as the differentially expressed between the two samples, and 936 of them were significantly highly expressed at the red pulp stage of H. polyrhizus. RNA-seq and iTRAQ analyses showed that some transcripts and proteins were positively correlated; they belonged to "phenylpropanoid biosynthesis", "tyrosine metabolism", "flavonoid biosynthesis", "ascorbate and aldarate metabolism", "betalains biosynthesis" and "anthocyanin biosynthesis". In betalains biosynthesis pathway, several proteins/enzymes such as polyphenol oxidase, CYP76AD3 and 4,5-dihydroxy-phenylalanine (DOPA) dioxygenase extradiol-like protein were identified. The present study provides a new insight into the molecular mechanism of the betalain biosynthesis at the posttranscriptional level.

9.
J Exp Bot ; 66(15): 4669-82, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25991739

RESUMO

Premature leaf senescence has a negative influence on the yield and quality of cotton, and several genes have been found to regulate leaf senescence. Howeer, many underlying transcription factors are yet to be identified. In this study, a NAP-like transcription factor (GhNAP) was isolated from Gossypium hirsutum. GhNAP has the typical NAC structure and a conserved novel subdomain in its divergent transcription activation region (TAR). GhNAP was demonstrated to be a nuclear protein, and it showed transcriptional activation activity in yeast. Furthermore, the expression of GhNAP was closely associated with leaf senescence. GhNAP could rescue the delayed-senescence phenotype of the atnap null mutant. Overexpression of GhNAP could cause precocious senescence in Arabidopsis. However, down-regulation of GhNAP delayed leaf senescence in cotton, and affected cotton yield and its fibre quality. Moreover, the expression of GhNAP can be induced by abscisic acid (ABA), and the delayed leaf senescence phenotype in GhNAPi plants might be caused by the decreased ABA level and reduced expression level of ABA-responsive genes. All of the results suggested that GhNAP could regulate the leaf senescence via the ABA-mediated pathways and was further related to the yield and quality in cotton.


Assuntos
Regulação da Expressão Gênica de Plantas , Gossypium/crescimento & desenvolvimento , Gossypium/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Gossypium/metabolismo , Mutação , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/metabolismo
10.
Plant Physiol ; 161(2): 1002-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23250625

RESUMO

Small Auxin Up RNA genes (SAURs) are early auxin-responsive genes, but whether any of them are involved in leaf senescence is not known. Auxin, on the other hand, has been shown to have a role in leaf senescence. Some of the external application experiments indicated that auxin can inhibit leaf senescence, whereas other experiments indicated that auxin can promote leaf senescence. Here, we report the identification and characterization of an Arabidopsis (Arabidopsis thaliana) leaf senescence-associated gene named SAG201, which is highly up-regulated during leaf senescence and can be induced by 1-naphthaleneacetic acid, a synthetic auxin. It encodes a functionally uncharacterized SAUR that has been annotated as SAUR36. Leaf senescence in transfer DNA insertion saur36 knockout lines was delayed as revealed by analyses of chlorophyll content, F(v)/F(m) ratio (a parameter for photosystem II activity), ion leakage, and the expression of leaf senescence marker genes. In contrast, transgenic Arabidopsis plants overexpressing SAUR36 (without its 3' untranslated region [UTR]) displayed an early leaf senescence phenotype. However, plants overexpressing SAUR36 with its 3' UTR were normal and did not exhibit the early-senescence phenotype. These data suggest that SAUR36 is a positive regulator of leaf senescence and may mediate auxin-induced leaf senescence and that the 3' UTR containing a highly conserved downstream destabilizes the SAUR36 transcripts in young leaves.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Folhas de Planta/fisiologia , RNA/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Clorofila/metabolismo , DNA Bacteriano/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Dados de Sequência Molecular , Mutagênese Insercional , Ácidos Naftalenoacéticos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
11.
J Exp Bot ; 65(14): 3901-13, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24935620

RESUMO

Leaf senescence is a very important trait that limits yield and biomass accumulation of agronomic crops and reduces post-harvest performance and the nutritional value of horticultural crops. Significant advance in physiological and molecular understanding of leaf senescence has made it possible to devise ways of manipulating leaf senescence for agricultural improvement. There are three major strategies in this regard: (i) plant hormone biology-based leaf senescence manipulation technology, the senescence-specific gene promoter-directed IPT system in particular; (ii) leaf senescence-specific transcription factor biology-based technology; and (iii) translation initiation factor biology-based technology. Among the first strategy, the P SAG12 -IPT autoregulatory senescence inhibition system has been widely explored and successfully used in a variety of plant species for manipulating senescence. The vast majority of the related research articles (more than 2000) showed that crops harbouring the autoregulatory system displayed a significant delay in leaf senescence without any abnormalities in growth and development, a marked increase in grain yield and biomass, dramatic improvement in horticultural performance, and/or enhanced tolerance to drought stress. This technology is approaching commercialization. The transcription factor biology-based and translation initiation factor biology-based technologies have also been shown to be very promising and have great potentials for manipulating leaf senescence in crops. Finally, it is speculated that technologies based on the molecular understanding of nutrient recycling during leaf senescence are highly desirable and are expected to be developed in future translational leaf senescence research.


Assuntos
Desenvolvimento Vegetal , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Biossíntese de Proteínas , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
12.
Plant J ; 69(4): 667-78, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22007837

RESUMO

It is known that a senescing leaf loses water faster than a non-senescing leaf and that ABA has an important role in promoting leaf senescence. However, questions such as why water loss is faster, how water loss is regulated, and how ABA functions in leaf senescence are not well understood. Here we report on the identification and functional analysis of a leaf senescence associated gene called SAG113. The RNA blot and GUS reporter analyses all show that SAG113 is expressed in senescing leaves and is induced by ABA in Arabidopsis. The SAG113 expression levels are significantly reduced in aba2 and abi4 mutants. A GFP fusion protein analysis revealed that SAG113 protein is localized in the Golgi apparatus. SAG113 encodes a protein phosphatase that belongs to the PP2C family and is able to functionally complement a yeast PP2C-deficient mutant TM126 (ptc1Δ). Leaf senescence is delayed in the SAG113 knockout mutant compared with that in the wild type, stomatal movement in the senescing leaves of SAG113 knockouts is more sensitive to ABA than that of the wild type, and the rate of water loss in senescing leaves of SAG113 knockouts is significantly reduced. In contrast, inducible over-expression of SAG113 results in a lower sensitivity of stomatal movement to ABA treatment, more rapid water loss, and precocious leaf senescence. No other aspects of growth and development, including seed germination, were observed. These findings suggest that SAG113, a negative regulator of ABA signal transduction, is specifically involved in the control of water loss during leaf senescence.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/enzimologia , Complexo de Golgi/enzimologia , Fosfoproteínas Fosfatases/metabolismo , Água/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Senescência Celular , Técnicas de Inativação de Genes , Germinação , Dados de Sequência Molecular , Mutação , Fosfoproteínas Fosfatases/genética , Filogenia , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/ultraestrutura , Estômatos de Plantas/enzimologia , Estômatos de Plantas/genética , Estômatos de Plantas/fisiologia , Estômatos de Plantas/ultraestrutura , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plântula/enzimologia , Plântula/genética , Plântula/fisiologia , Plântula/ultraestrutura , Sementes/enzimologia , Sementes/genética , Sementes/fisiologia , Sementes/ultraestrutura , Alinhamento de Sequência , Transdução de Sinais/fisiologia
13.
Plant Physiol ; 158(2): 961-9, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22184656

RESUMO

AtNAP is a NAC family transcription factor gene that plays a key role in leaf senescence but its underlying mechanisms are not known. SENESCENCE-ASSOCIATED GENE113 (SAG113), a gene encoding a Golgi-localized protein phosphatase 2C family protein phosphatase, mediates abscisic acid (ABA)-regulated stomatal movement and water loss specifically during leaf senescence. Here we report that SAG113 is a direct target gene of the AtNAP transcription factor. We found that both AtNAP and SAG113 were induced by leaf senescence and ABA. When AtNAP was chemically induced, SAG113 was also induced whereas when AtNAP was knocked out, the ABA- and senescence-induced expression of SAG113 was reduced. These data suggest that the expression of SAG113 is predominantly dependent on AtNAP. Functionally, overexpression of SAG113 restored the markedly delayed leaf senescence phenotype in atnap knockouts to wild type. Yeast (Saccharomyces cerevisiae) one-hybrid experiments and electrophoresis mobility shift assays showed that AtNAP could physically bind to the SAG113 promoter in vivo and in vitro, respectively. Site-directed mutagenesis revealed that AtNAP binds to a 9-bp core sequence of the SAG113 promoter, 5'CACGTAAGT3'. These results indicate that there is a unique regulatory chain, ABA-AtNAP-SAG113 protein phosphastase 2C, which controls stomatal movement and water loss during leaf senescence.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Folhas de Planta/metabolismo , Fatores de Transcrição/metabolismo , Água/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Sequência de Bases , DNA de Plantas , Ensaio de Desvio de Mobilidade Eletroforética , Folhas de Planta/enzimologia , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Proteína Fosfatase 2C , Fatores de Transcrição/genética
14.
Mol Hortic ; 3(1): 22, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37899482

RESUMO

We previously reported that ABA inhibits stomatal closure through AtNAP-SAG113 PP2C regulatory module during leaf senescence. The mechanism by which this module exerts its function is unknown. Here we report the identification and functional analysis of SAG114, a direct target of the regulatory module. SAG114 encodes SnRK3.25. Both bimolecular fluorescence complementation (BiFC) and yeast two-hybrid assays show that SAG113 PP2C physically interacts with SAG114 SnRK3.25. Biochemically the SAG113 PP2C dephosphorylates SAG114 in vitro and in planta. RT-PCR and GUS reporter analyses show that SAG114 is specifically expressed in senescing leaves in Arabidopsis. Functionally, the SAG114 knockout mutant plants have a significantly bigger stomatal aperture and a much faster water loss rate in senescing leaves than those of wild type, and display a precocious senescence phenotype. The premature senescence phenotype of sag114 is epistatic to sag113 (that exhibits a remarkable delay in leaf senescence) because the sag113 sag114 double mutant plants show an early leaf senescence phenotype, similar to that of sag114. These results not only demonstrate that the ABA-AtNAP-SAG113 PP2C regulatory module controls leaf longevity by dephosphorylating SAG114 kinase, but also reveal the involvement of the SnRK3 family gene in stomatal movement and water loss during leaf senescence.

15.
Plant Physiol ; 156(3): 1612-9, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21543729

RESUMO

Whole plant senescence of monocarpic plants consists of three major processes: arrest of shoot apical meristem, organ senescence, and permanent suppression of axillary buds. At early stages of development, axillary buds are inhibited by shoot apex-produced auxin, a mechanism known as apical dominance. How the buds are suppressed as an essential part of whole plant senescence, especially when the shoot apexes are senescent, is not clear. Here, we report an AtMYB2-regulated post apical dominance mechanism by which Arabidopsis (Arabidopsis thaliana) inhibits the outgrowth of axillary buds as part of the whole plant senescence program. AtMYB2 is expressed in the compressed basal internode region of Arabidopsis at late stages of development to suppress the production of cytokinins, the group of hormones that are required for axillary bud outgrowth. atmyb2 T-DNA insertion lines have enhanced expression of cytokinin-synthesizing isopentenyltransferases genes, contain higher levels of cytokinins, and display a bushy phenotype at late stages of development. As a result of the continuous generation of new shoots, atmyb2 plants have a prolonged life span. The AtMYB2 promoter-directed cytokinin oxidase 1 gene in the T-DNA insertion lines reduces the endogenous cytokinin levels and restores the bushy phenotype to the wild type.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Citocininas/metabolismo , Transativadores/metabolismo , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , DNA Bacteriano/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Modelos Biológicos , Mutagênese Insercional/genética , Oxirredutases/metabolismo , Fenótipo , Caules de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transativadores/genética
16.
Plant Cell Environ ; 35(3): 644-55, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21988545

RESUMO

In addition to age and developmental progress, leaf senescence and senescence-associated genes (SAGs) can be induced by other factors such as plant hormones, pathogen infection and environmental stresses. The relationship is not clear, however, between these induced senescence processes and developmental leaf senescence, and to what extent these senescence-promoting signals mimic age and developmental senescence in terms of gene expression profiles. By analysing microarray expression data from 27 different treatments (that are known to promote senescence) and comparing them with that from developmental leaf senescence, we were able to show that at early stages of treatments, different hormones and stresses showed limited similarity in the induction of gene expression to that of developmental leaf senescence. Once the senescence process is initiated, as evidenced by visible yellowing, generally after a prolonged period of treatments, a great proportion of SAGs of developmental leaf senescence are shared by gene expression profiles in response to different treatments. This indicates that although different signals that lead to initiation of senescence may do so through distinct signal transduction pathways, senescence processes induced either developmentally or by different senescence-promoting treatments may share common execution events.


Assuntos
Arabidopsis/genética , Folhas de Planta/fisiologia , Estresse Fisiológico , Transcriptoma , Arabidopsis/fisiologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos
17.
J Exp Bot ; 63(17): 6139-47, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23066145

RESUMO

Arabidopsis has been used as a model system to study many aspects of plant growth and development. However, fruit senescence in Arabidopsis has been less investigated and the underlying molecular and hormonal (especially ethylene) regulatory mechanisms are not well understood. It is reported here that the Arabidopsis silique has characteristics of a climacteric fruit, and that AtNAP, a NAC family transcription factor gene whose expression is increased with the progression of silique senescence, plays an important role in its senescence. Silique senescence was delayed for 4-5 d in the atnap knockout mutant plants. The ethylene climacteric was delayed for 2 d in the atnap silique and the associated respiratory climacteric was suppressed. Exogenous ethylene stimulated respiration in the wild type, but not in the atnap mutant. The decoupling of the ethylene and respiratory climacterics in the atnap mutant suggests that AtNAP is required for ethylene stimulation of respiration. qPCR analyses revealed that the expression patterns of genes involved in ethylene biosynthesis, perception, and signalling, ACS2, ETR1, CTR1, EIN2, EIN3, and ERF1, were also altered in the atnap mutant. The effects of exogenous ABA, SA, 6-BA, and NAA on ethylene production and respiration in siliques of the wild type and atnap mutant were also investigated. A model involving ABA-AtNAP-controlled stomatal opening in regulating ethylene-stimulated respiration in fruit senescence is presented.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Etilenos/farmacologia , Frutas/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Respiração Celular , Clorofila/metabolismo , Etilenos/análise , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Modelos Biológicos , Mutação , Fenótipo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas , RNA de Plantas/genética , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Mol Hortic ; 2(1): 15, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-37789442

RESUMO

Salicylic acid (SA) is an important plant hormone that regulates defense responses and leaf senescence. It is imperative to understand upstream factors that regulate genes of SA biosynthesis. SAG202/SARD1 is a key regulator for isochorismate synthase 1 (ICS1) induction and SA biosynthesis in defense responses. The regulatory mechanism of SA biosynthesis during leaf senescence is not well understood. Here we show that AtNAP, a senescence-specific NAC family transcription factor, directly regulates a senescence-associated gene named SAG202 as revealed in yeast one-hybrid and in planta assays. Inducible overexpreesion of AtNAP and SAG202 lead to high levels of SA and precocious senescence in leaves. Individual knockout mutants of sag202 and ics1 have markedly reduced SA levels and display a significantly delayed leaf senescence phenotype. Furthermore, SA positively feedback regulates AtNAP and SAG202. Our research has uncovered a unique positive feedback regulatory loop, SA-AtNAP-SAG202-ICS1-SA, that operates to control SA biosynthesis associated with leaf senescence but not defense response.

19.
Mol Hortic ; 2(1): 26, 2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-37789398

RESUMO

Increasingly warming temperature impacts on all aspects of growth and development in plants. Flower development is a complex process that is very sensitive to ambient temperature, and warming temperatures often lead to abnormal flower development and remarkably reduce the quality and yield of inflorescent vegetables and many other crops, which can be exemplified by Brassica oleracea cv. Green Harmony F1, a broccoli cultivar, whose floral development is ceased at inflorescence meristem (at 28 °C) or floral primordium stage (at 22 °C), forming a cauliflower-like curd (28 °C) or intermediate curd (22 °C) instead of normal broccoli head at 16 °C. However, the underlying molecular regulatory mechanisms are not well understood. Here we report that warming temperature (28 °C or 22 °C) induced hypermethylation of the genome, especially the promoter regions of such sets of genes as ribosome biogenesis-related and others, leading to the suppression of the apex-highly-expressed distinctive genes, subsequently resulting in the abnormal floral development, as revealed by methylome and transcriptome co-profiling. The regulation of warming-induced abnormal floral development in broccoli was further verified by the fact that the DNA methylation inhibitor 5-azacytidine (5-azaC) released the expression of genes from the warming temperature-induced suppression, and restored the broccoli development to normalcy at warming temperature. The research provided new approaches to breeding broccoli and other crops for growing in wider or warmer temperature zones. Graphical Abstract.

20.
Mol Hortic ; 1(1): 12, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37789454

RESUMO

Cytokinins (CKs) are a class of adenine-derived plant hormones that plays pervasive roles in plant growth and development including cell division, morphogenesis, lateral bud outgrowth, leaf expansion and senescence. CKs as a "fountain of youth" prolongs leaf longevity by inhibiting leaf senescence, and therefore must be catabolized for senescence to occur. AtNAP, a senescence-specific transcription factor has a key role in promoting leaf senescence. The role of AtNAP in regulating CK catabolism is unknown. Here we report the identification and characterization of AtNAP-AtCKX3 (cytokinin oxidase 3) module by which CKs are catabolized during leaf senescence in Arabidopsis. Like AtNAP, AtCKX3 is highly upregulated during leaf senescence. When AtNAP is chemically induced AtCKX3 is co-induced; and when AtNAP is knocked out, the expression of AtCKX3 is abolished. AtNAP physically binds to the cis element of the AtCKX3 promoter to direct its expression as revealed by yeast one-hybrid assays and in planta experiments. Leaves of the atckx3 knockout lines have higher CK concentrations and a delayed senescence phenotype compared with those of WT. In contrast, leaves with inducible expression of AtCKX3 have lower CK concentrations and exhibit a precocious senescence phenotype compared with WT. This research reveals that AtNAP transcription factor-AtCKX3 module regulates leaf senescence by connecting two antagonist plant hormones abscisic acid and CKs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA