RESUMO
Conventional methods for the detection and differentiation of Bacillus cereus group species have drawbacks mostly due to the complexity of genetic discrimination between the Bacillus cereus species. Here, we describe a simple and straightforward assay based on the detected unamplified bacterial 16S rRNA by DNA nanomachine (DNM). The assay uses a universal fluorescent reporter and four all-DNA binding fragments, three of which are responsible for "opening up" the folded rRNA while the fourth stand is responsible for detecting single nucleotide variation (SNV) with high selectivity. Binding of the DNM to 16S rRNA results in the formation of the 10-23 deoxyribozyme catalytic core that cleaves the fluorescent reporter and produces a signal, which is amplified over time due to catalytic turnover. This developed biplex assay enables the detection of B. thuringiensis 16S rRNA at fluorescein and B. mycoides at Cy5 channels with a limit of detection of 30 × 103 and 35 × 103 CFU/mL, respectively, after 1.5 h with a hands-on time of ~10 min. The new assay may simplify the analysis of biological RNA samples and might be useful for environmental monitoring as a simple and inexpensive alternative to amplification-based nucleic acid analysis. The DNM proposed here may become an advantageous tool for detecting SNV in clinically significant DNA or RNA samples and can easily differentiate SNV under broadly variable experimental conditions and without prior amplification.
Assuntos
Bacillus , Bacillus/genética , Bacillus cereus/genética , RNA Ribossômico 16S/genética , DNA Ribossômico/genética , DNA BacterianoRESUMO
The search for new anticancer drugs based on biogenic metals, which have weaker side effects compared to platinum-based drugs, remains an urgent task in medicinal chemistry. Titanocene dichloride, a coordination compound of fully biocompatible titanium, has failed in pre-clinical trials but continues to attract the attention of researchers as a structural framework for the development of new cytotoxic compounds. In this study, a series of titanocene (IV) carboxylate complexes, both new and those known from the literature, was synthesized, and their structures were confirmed by a complex of physicochemical methods and X-ray diffraction analysis (including one previously unknown structure based on perfluorinated benzoic acid). The comprehensive comparison of three approaches for the synthesis of titanocene derivatives known from the literature (the nucleophilic substitution of chloride anions of titanocene dichloride with sodium and silver salts of carboxylic acids as well as the reaction of dimethyltitanocene with carboxylic acids themselves) made it possible to optimize these methods to obtain higher yields of individual target compounds, generalize the advantages and disadvantages of these techniques, and determine the substrate frames of each method. The redox potentials of all obtained titanocene derivatives were determined by cyclic voltammetry. The relationship between the structure of ligands, the reduction potentials of titanocene (IV), and their relative stability in redox processes, as obtained in this work, can be used for the design and synthesis of new effective cytotoxic titanocene complexes. The study of the stability of the carboxylate-containing derivatives of titanocene obtained in the work in aqueous media showed that they were more resistant to hydrolysis than titanocene dichloride. Preliminary tests of the cytotoxicity of the synthesised titanocene dicarboxilates on MCF7 and MCF7-10A cell lines demonstrated an IC50 ≥ 100 µM for all the obtained compounds.
Assuntos
Antineoplásicos , Compostos Organometálicos , Humanos , Eletroquímica , Compostos Organometálicos/química , Antineoplásicos/química , Células MCF-7 , Ácidos CarboxílicosRESUMO
Diosgenin is of significant interest due to its biological activity and synthetic application. In this study, we report the synthesis of a series of spirostanic 1,4,5-trisubstituted 1,2,3-triazoles by the three component reaction of (25R)-6-azidospirostan-3,5-diols with acetophenones and aryl aldehydes. The one-pot two step synthesis proceeds through the in situ formation of (E)-chalcones and copper catalyzed reaction with organic azides in DMF medium. Structural diversity was achieved by varying the aldehyde and acetophenone nature as well as the spirostanic azide stereochemistry. The results of in vitro biological assays showed that fully decorated spirostanic 1,2,3-triazoles exerted significant and selective antiproliferative activity against MCF-7, glioblastoma (SNB-19, T98G, A-172) and neuroblastoma (IMR-32, SH-SYSY) (HCT116) cell lines (GI50 in the single-digit micromolar range). The data revealed that benzoyl and aryl substitutions in the triazole ring introduced at the 6ß-position significantly improved the anti-tumor activity of (25R)-6-azidospirostan-3ß,5α-diols. This position on the spirostan core may be the favourable to synthesize of potent anticancer leads from diosgenin.