Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell Biochem Funct ; 42(2): e3982, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38488412

RESUMO

Bone Morphogenetic Protein 2 (BMP2), a member of the Transforming Growth Factor-ß (TGF-ß) super family of proteins and is instrumental in the repair of fractures. The synthesis of BMP2 involves extensive post-translational processing and several studies have demonstrated the abysmally low production of rhBMP2 in eukaryotic systems, which may be due to the short half-life of the bioactive protein. Consequently, production costs of rhBMP2 are quite high, limiting its availability to the general populace. Therefore, there is an urgent need to identify better in-vitro systems for large scale production of rhBMP2. In the present study, we have carried out a comparative analysis of rhBMP2 production by the conventionally used Chinese Hamster ovarian cells (CHO) and goat mammary epithelial cells (GMEC), upon transfection with appropriate construct. Udder gland cells are highly secretory, and we reasoned that such cells may serve as a better in-vitro model for large scale production of rhBMP2. Our results indicated that the synthesis and secretion of bioactive rhBMP2 by goat mammary epithelial cells was significantly higher as compared to that by CHO-K1 cells. Our results provide strong evidence that GMECs may serve as a better alternative to other mammalian cells used for therapeutic protein production.


Assuntos
Proteína Morfogenética Óssea 2 , Cabras , Cricetinae , Animais , Humanos , Proteína Morfogenética Óssea 2/farmacologia , Cricetulus , Fator de Crescimento Transformador beta , Proteínas Recombinantes/farmacologia , Células Epiteliais
2.
Biotechnol Bioeng ; 119(11): 3275-3283, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35896515

RESUMO

Transfection of nucleic acid molecules into mammalian cells can be facilitated using viral vectors, electroporation, or biocompatible cationic materials. However, safety issues and the requirement of specialized equipment limits the use of viral vectors and physical methods of transfection like electroporation and microinjection, respectively. Biocompatible cationic lipids and polymers like branched-polyethyleneimine (bPEI) have a wide transfection range and are user-friendly in most applications. However, bPEI exhibits low transfection efficiency in most cell types. In the present work, we have crosslinked the hexanoyl group to bPEI using anhydride chemistry to enhance its efficiency as a transfection reagent. The efficient association of hexanoyl group to bPEI was assessed using Fourier-transform infrared spectroscopy and other physicochemical methods. Hexanoyl-modified bPEI (FA6-bPEI) was found to exhibit significantly enhanced transfection efficiency in both cell lines and cultured primary cells, as compared to native bPEI and the commercially available transfection reagent, Lipofectamine 3000. Furthermore, our in vitro studies indicated that FA6-bPEI can be used for robust transfection for increased production of therapeutic proteins in a cell culture-based system. These results suggested that hexanoyl-modified bPEI can serve as an efficient transfection reagent for studies on hard-to-transfect cells and for enhanced production of therapeutic proteins in vitro.


Assuntos
Ácidos Nucleicos , Polietilenoimina , Anidridos , Animais , Materiais Biocompatíveis , Linhagem Celular , DNA/metabolismo , Mamíferos/metabolismo , Ácidos Nucleicos/metabolismo , Polietilenoimina/química , Polietilenoimina/metabolismo , Polímeros/química , Transfecção
3.
Cell Biol Int ; 45(8): 1720-1732, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33847415

RESUMO

Keratin 8/18, the predominant keratin pair of simple epithelia, is known to be aberrantly expressed in several squamous cell carcinomas (SCCs), where its expression is often correlated with increased invasion, neoplastic progression, and poor prognosis. The majority of keratin 8/18 structural and regulatory functions are governed by posttranslational modifications, particularly phosphorylation. Apart from filament reorganization, cellular processes including cell cycle, cell growth, cellular stress, and apoptosis are known to be orchestrated by K8 phosphorylation at specific residues in the head and tail domains. Even though deregulation of K8 phosphorylation at two significant sites (Serine73 /Serine431 ) has been implicated in neoplastic progression of SCCs by various in vitro studies, including ours, it is reported to be highly context-dependent. Therefore, to delineate the precise role of Kereatin 8 phosphorylation in cancer initiation and progression, we have developed the tissue-specific transgenic mouse model expressing Keratin 8 wild type and phosphodead mutants under Keratin 14 promoter. Subjecting these mice to 7,12-dimethylbenz(a)anthracene/12-O-tetradecanoylphorbol-13-acetate-mediated skin carcinogenesis revealed that Keratin 8 phosphorylation may lead to an early onset of tumors compared to Keratin 8 wild-type expressing mice. Conclusively, the transgenic mouse model developed in the present study ascertained a positive impact of Keratin 8 phosphorylation on the neoplastic transformation of skin-squamous cells.


Assuntos
Carcinogênese/metabolismo , Queratina-8/metabolismo , Mutação/fisiologia , Neoplasias Cutâneas/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/patologia , Eletroporação/métodos , Células HEK293 , Humanos , Queratina-8/genética , Masculino , Camundongos , Camundongos Transgênicos , Fosforilação/fisiologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
4.
J Cell Biochem ; 119(8): 6514-6526, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29363789

RESUMO

The somatic component of seminiferous epithelium, the Sertoli cells (Sc) respond to Follicle stimulating hormone (FSH), and Testosterone (T) to produce factors which are necessary for germ cell (Gc) survival and differentiation. Infant Sc do not support spermatogenesis in spite of sufficient hormonal milieu, a situation similar to that found in male idiopathic infertility. Sc maturation during pubertal period involves expression of some genes which may be important for initiation of spermatogenesis. Analysis of differentially expressed genes, one by one, in infant and pubertal Sc might provide useful information about the regulation of spermatogenesis. DNA microarray based analysis of mRNA from 5-days (infant) and 12-days (pubertal) old rat Sc revealed increased expression of Nor-1 by pubertal Sc. NOR-1 is an orphan nuclear receptor involved in maintaining cellular homeostasis and disease. We generated transgenic mice using shRNA cloned under Pem (Rhox5) promoter which is activated at puberty in Sc. Such transgenic mice had reduced Nor-1 expression and increased Tgfß1, Tgfß3, and Smad3 expression. Moreover, an increase in ß-catenin expression was observed in NOR-1 knockdown testes. High ß-catenin in such transgenic mice was found to be associated with disruption of Sc maturation characterized by elevated expression of Anti Mullerian hormone, Cytokeratin 18, and Sox9. This disruption of Sc maturation resulted in Gc apoptosis. Such NOR-1 knockdown mice showed reduced sperm count and litter size. We report for the first time that NOR-1 plays a crucial role in regulating sperm count and male fertility.


Assuntos
Proteínas de Ligação a DNA/biossíntese , Fertilidade , Proteínas do Tecido Nervoso/biossíntese , Receptores de Esteroides/biossíntese , Receptores dos Hormônios Tireóideos/biossíntese , Células de Sertoli/metabolismo , Espermatogênese , Espermatozoides/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Masculino , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Ratos , Receptores de Esteroides/genética , Receptores dos Hormônios Tireóideos/genética , Células de Sertoli/citologia , Contagem de Espermatozoides , Espermatozoides/citologia
5.
Cell Tissue Res ; 371(2): 351-363, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29064078

RESUMO

Testicular Sertoli cells make a niche for the division and differentiation of germ cells. Sertoli cells respond to increased follicle-stimulating hormone (FSH) and testosterone (T) levels at the onset of puberty by producing paracrine factors which affect germ cells and trigger robust onset of spermatogenesis. Such paracrine support to germ cells is absent during infancy, despite Sertoli cells being exposed to high FSH and T within the infant testis. This situation is similar to certain cases of male idiopathic infertility where post-pubertal Sertoli cells fail to support germ cell division and differentiation in spite of endogenous or exogenous hormonal support. Defective Sertoli cells in such individuals may fail to express the full complement of their paracrine repertoire. Identification and supplementation with such factors may overcome Sertoli cells deficiencies and help trigger quantitatively and qualitatively normal differentiation of germ cells. To this end, we compared the transcriptome of FSH- and T-treated infant and pubertal monkey Sertoli cells by DNA microarray. Expression of Wnt3, a morphogen of the Wnt/ß-catenin pathway, was higher in pubertal Sertoli cells relative to infant Sertoli cells. Transgenic mice were generated by us in which Wnt3 expression was curtailed specifically in post-pubertal Sertoli cells by shRNA. Subfertility and oligozoospermia were noticed in such animals with low Wnt3 expression in post-pubertal Sertoli cells along with diminished expression of Connexin43, a gap-junctional molecule essential for germ cell development. We report that the FSH- and T-targetedf Wnt3 governs Sertoli cell-mediated regulation of spermatogenesis and hence is crucial for fertility.


Assuntos
Fertilidade , Células de Sertoli/metabolismo , Testículo/patologia , Proteína Wnt3/metabolismo , Animais , Células Cultivadas , Conexina 43/metabolismo , Técnicas de Silenciamento de Genes , Haplorrinos , Masculino , Camundongos Transgênicos , Células de Sertoli/patologia , Via de Sinalização Wnt
6.
Appl Microbiol Biotechnol ; 102(14): 6221-6234, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29855689

RESUMO

Protein expression in the milk of transgenic farmed animals offers a cost-effective system for producing therapeutics. However, transgenesis in farmed animals is not only cumbersome but also involves risk of potential hazard by germline gene integration, due to interruptions caused by the transgene in the native genome. Avoiding germline gene integration, we have delivered buffalo ß-casein promoter-driven transgene construct entrapped in virosomes directly in the milk gland through intraductal perfusion delivery. Virosomes were generated from purified Sendai viral membrane, containing hemagglutinin-neuraminidase (HN) and fusion factor (F) proteins on surface (HNF-Virosomes) which initiate membrane fusion, devoid of any viral nucleic acids. Intraductal delivery of HNF-Virosomes predominantly transfected luminal epithelial cells lining the milk duct and buffalo ß-casein promoter of the construct ensured mammary luminal epithelial cell specific expression of the transgene. Mammary epithelial cells expressed EGFP at lactation when egfp was used as a transgene. Similarly, human interferon-γ (hIFN-γ) was expressed in the mammary gland as well as in the milk when hIFN-γ was used as a transgene. This combinatorial approach of using Sendai viral membrane-derived virosomes for entrapment and delivery of the transgene and using buffalo ß-casein promoter for mammary gland specific gene expression provided a better option for generating therapeutic proteins in milk, bypassing germline gene integration avoiding risks associated with animal bioreactor generated through germline gene integration.


Assuntos
Terapia Biológica/métodos , Búfalos/genética , Expressão Gênica/genética , Lactação/genética , Glândulas Mamárias Animais/metabolismo , Leite/química , Transgenes/genética , Animais , Caseínas/genética , Feminino , Humanos , Regiões Promotoras Genéticas/genética , Vírus Sendai/genética
7.
Biochim Biophys Acta Gene Regul Mech ; 1867(1): 194994, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37956710

RESUMO

The generation of spermatozoa from developing germ cells through mitotic and meiotic divisions is a highly regulated and complex process. Any defect in this process, may lead to subfertility/infertility. The role of different transcripts (mRNA/miRNA/lncRNA) in regulation of the pre-meiotic, meiotic, and post-meiotic stages of spermatogenesis are being proposed based on various multiomics based approaches. Such differential gene-expression is regulated by promoter elements that are activated in a stage specific manner. To determine the role of these differentially expressed transcripts in the process of meiosis, a robust post-meiotic germ cell specific promoter is required. In the present study, we have isolated and characterized the expression of the mouse Proacrosin, SP10, and ELP promoters for driving post-meiotic germ cell specific gene-expression. Promoter regions of all these 3 genes were isolated and cloned to generate mammalian expression vector. The transgene expression in post-meiotic germ cells was assessed in mice using the testicular electroporation method in vitro as well as in vivo, using above promoters. It was also validated in goat seminiferous tubules, in vitro. We have also carried out a comparative analysis of the strength of these promoters to confirm their robustness that indicated Proacrosin to be the most robust promoter that can be useful for diving post-meiotic germ cells specific gene-expression. These promoters can be used to alter gene-expression specifically in post-meiotic germ cells for deciphering the role(s) of germ cell genes in spermatogenic progression or for expressing various genome editing tools for engineering the germ cell genome to understand basis of subfertility/infertility.


Assuntos
Células Germinativas , Infertilidade , Masculino , Camundongos , Animais , Regiões Promotoras Genéticas/genética , Expressão Gênica , Genômica , Mamíferos
8.
J Mol Endocrinol ; 69(3): 431-444, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35917434

RESUMO

Endometrial cancer is the fourth most common malignancy in women and the precursor lesion is endometrial hyperplasia. HOXA10 is a transcription factor that plays key roles in endometrial functions such as the endowment of receptivity, embryo implantation, and trophoblast invasion. Herein, using testicular transgenesis, we developed transgenic mice that expressed a shRNA against HOXA10 and there was a nearly 70% reduction in the expression of HOXA10 in these animals. We observed that downregulation of HOXA10 led to the development of endometrial hyperplasia in the young animals (3 months), and as they aged (>1 year), most animals developed well-differentiated endometrial adenocarcinoma. In the endometrium of animals with reduced HOXA10, there was increased proliferation and elevated levels of ERα and ERß. In parallel, there was increased expression of Wnt4 and ß-Catenin, SOX9, and YAP1. We propose that chronic reduction in HOXA10 expression disrupts multiple pathways in the uterus that aids in the development of endometrial hyperplasia which progresses to endometrial cancer with age.


Assuntos
Hiperplasia Endometrial , Neoplasias do Endométrio , Animais , Implantação do Embrião/fisiologia , Hiperplasia Endometrial/genética , Hiperplasia Endometrial/metabolismo , Neoplasias do Endométrio/patologia , Endométrio/metabolismo , Feminino , Proteínas Homeobox A10 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos
9.
Bioengineered ; 12(1): 4407-4419, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34436976

RESUMO

Widespread infection due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has led to a global pandemic. Currently, various approaches are being taken up to develop vaccines and therapeutics to treat SARS-CoV2 infection. Consequently, the S protein has become an important target protein for developing vaccines and therapeutics against SARS-CoV2. However, the highly infective nature of SARS-CoV2 restricts experimentation with the virus to highly secure BSL3 facilities. The availability of fusion-enabled, nonreplicating, and nonbiohazardous mimics of SARS-CoV2 virus fusion, containing the viral S or S and M protein in their native conformation on mammalian cells, can serve as a useful substitute for studying viral fusion for testing various inhibitors of viral fusion. This would avoid the use of the BSL3 facility for fusion studies required to develop therapeutics. In the present study, we have developed SARS-CoV2 virus fusion mimics (SCFMs) using mammalian cells transfected with constructs coding for S or S and M protein. The fusogenic property of the mimic(s) and their interaction with the functional human ACE2 receptors was confirmed experimentally. We have also shown that such mimics can easily be used in an inhibition assay. These mimic(s) can be easily prepared on a large scale, and such SCFMs can serve as an invaluable resource for viral fusion inhibition assays and in vitro screening of antiviral agents, which can be shared/handled between labs/facilities without worrying about any biohazard while working under routine laboratory conditions, avoiding the use of BSL3 laboratory.Abbreviations :SCFM: SARS-CoV2 Virus Fusion Mimic; ACE2: Angiotensin-Converting Enzyme 2; hACE2: Human Angiotensin-Converting enzyme 2; MEF: Mouse Embryonic Fibroblasts; HBSS: Hanks Balanced Salt Solution; FBS: Fetal Bovine Serum.


Assuntos
Anticorpos Neutralizantes/farmacologia , Contenção de Riscos Biológicos/métodos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Proteínas da Matriz Viral/antagonistas & inibidores , Internalização do Vírus/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Chlorocebus aethiops , Embrião de Mamíferos , Fibroblastos/efeitos dos fármacos , Fibroblastos/virologia , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Células MCF-7 , Camundongos , Mimetismo Molecular , Plasmídeos/química , Plasmídeos/metabolismo , Cultura Primária de Células , Ligação Proteica , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Transfecção , Células Vero , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo
10.
Mol Ther Methods Clin Dev ; 3: 16076, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27933305

RESUMO

Our ability to decipher gene sequences has increased enormously with the advent of modern sequencing tools, but the ability to divulge functions of new genes have not increased correspondingly. This has caused a remarkable delay in functional interpretation of several newly found genes in tissue and age specific manner, limiting the pace of biological research. This is mainly due to lack of advancements in methodological tools for transgenesis. Predominantly practiced method of transgenesis by pronuclear DNA-microinjection is time consuming, tedious, and requires highly skilled persons for embryo-manipulation. Testicular electroporation mediated transgenesis requires use of electric current to testis. To this end, we have now developed an innovative technique for making transgenic mice by giving hypotonic shock to male germ cells for the gene delivery. Desired transgene was suspended in hypotonic Tris-HCl solution (pH 7.0) and simply injected in testis. This resulted in internalization of the transgene in dividing germ-cells residing at basal compartment of tubules leading to its integration in native genome of mice. Such males generated transgenic progeny by natural mating. Several transgenic animals can be generated with minimum skill within short span of time by this easily adaptable novel technique.

11.
Stem Cell Res Ther ; 7(1): 142, 2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27659063

RESUMO

BACKGROUND: Spermatogonial stem cell (SSC) transplantation (SSCT) has become important for conservation of endangered species, transgenesis and for rejuvenating testes which have lost germ cells (Gc) due to gonadotoxic chemotherapy or radiotherapy during the prepubertal phase of life. Creating a germ cell-depleted animal model for transplantation of normal or gene-transfected SSC is a prerequisite for such experimental studies. Traditionally used intraperitoneal injections of busulfan to achieve this are associated with painful hematopoietic toxicity and affects the wellbeing of the animals. Use of testicular busulfan has been reported recently to avoid this but with a very low success rate of SSCT. Therefore, it is necessary to establish a more efficient method to achieve higher SSCT without any suffering or mortality of the animals. METHODS: A solution of busulfan, ranging from 25 µg/20 µl to 100 µg/20 µl in 50 % DMSO was used for this study. Each testis received two diagonally opposite injections of 10 µl each. Only DMSO was used as control. Germ cell depletion was checked every 15 days. GFP-expressing SSC from transgenic donor mice C57BL/6-Tg (UBC-GFP) 30Scha/J were transplanted into busulfan-treated testis. Two months after SSCT, mice were analyzed for presence of colonies of donor-derived SSC and their ability to generate offspring. RESULTS: A dose of 75 µg of busulfan resulted in reduction of testis size and depletion of the majority of Gc of testis in all mice within 15 days post injection without causing mortality or a cytotoxic effect in other organs. Two months after SSCT, colonies of donor-derived Gc-expressing GFP were observed in recipient testes. When cohabitated with females, donor-derived offspring were obtained. By our method, 71 % of transplanted males sired transgenic progeny as opposed to 5.5 % by previously described procedures. About 56 % of progeny born were transgenic by our method as opposed to 1.2 % by the previously reported methods. CONCLUSIONS: We have established an efficient method of generating a germ cell-depleted animal model by using a lower dose of busulfan, injected through two diagonally opposite sites in the testis, which allows efficient colonization of transplanted SSC resulting in a remarkably higher proportion of donor-derived offspring generation.

12.
J Biotechnol ; 198: 53-9, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25678138

RESUMO

Therapeutic proteins are produced in microbes, mammalian cell lines, and body fluids by applying recombinant DNA technology. They are required for compensating the deficiency of essential proteins in patients. Animal bioreactors producing such valuable bio-pharmaceuticals in body fluids have lately emerged as efficient and cost-effective expression systems. Promoters, along with other regulatory elements of genes coding for milk proteins, have been cloned from few species for directing the expression of desired proteins in the milk of farm animals. However, buffaloes, which are the second largest source of milk production in the world, have remained unexplored for such use. Since mammary epithelial cell-specific ß-casein is the most abundantly expressed protein found in buffalo milk, we have isolated the promoter region and the transcriptional regulatory element along with exon 1, Intron 1 and partial exon 2 of the ß-casein gene from the genome of the Indian river buffalo (Bubalus bubalis) and have characterized the same (GenBank accession no. KF612339). Mammary epithelial cells of buffalo and human (MCF7) expressed Enhanced green fluorescent protein (EGFP) upon transfection with the construct where egfp was cloned under the ß-casein promoter. Transfected HEK-293 cells failed to express EGFP. Transgenic female mice generated using this construct expressed EGFP in the milk gland during lactation, without leaky expression in any other organs. This promoter also drove expression of recombinant human Interferonγ suggesting its use for expressing recombinant bio-pharmaceuticals in the milk of buffalo or other farm animals. Additionally, this may also allow breast gland-specific gene expression for remediation of breast gland-associated diseases.


Assuntos
Búfalos/genética , Caseínas/genética , Células Epiteliais/metabolismo , Expressão Gênica/genética , Regiões Promotoras Genéticas/genética , Animais , Animais Domésticos/genética , Animais Domésticos/metabolismo , Búfalos/metabolismo , Caseínas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Éxons/genética , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Íntrons/genética , Lactação/genética , Células MCF-7 , Masculino , Camundongos , Camundongos Transgênicos , Leite/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Elementos Reguladores de Transcrição/genética , Transfecção/métodos
13.
Sci Rep ; 3: 3430, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24305437

RESUMO

Microinjection of foreign DNA in male pronucleus by in-vitro embryo manipulation is difficult but remains the method of choice for generating transgenic animals. Other procedures, including retroviral and embryonic stem cell mediated transgenesis are equally complicated and have limitations. Although our previously reported technique of testicular transgenesis circumvented several limitations, it involved many steps, including surgery and hemicastration, which carried risk of infection and impotency. We improved this technique further, into a two step non-surgical electroporation procedure, for making transgenic mice. In this approach, transgene was delivered inside both testes by injection and modified parameters of electroporation were used for in-vivo gene integration in germ cells. Using variety of constructs, germ cell integration of the gene and its transmission in progeny was confirmed by PCR, slot blot and immunohistochemical analysis. This improved technique is efficient, requires substantially less time and can be easily adopted by various biomedical researchers.


Assuntos
Técnicas de Transferência de Genes , Células Germinativas/metabolismo , Transgenes , Animais , Animais Geneticamente Modificados , Eletroporação/métodos , Expressão Gênica , Genes Reporter , Masculino , Camundongos , Camundongos Transgênicos , Testículo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA