Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Opt Lett ; 48(5): 1172-1175, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857241

RESUMO

A multiple microwave frequency measurement approach based on frequency-to-time mapping (FTTM) is reported. The FTTM is constructed by optical sideband sweeping and electric-domain intermediate frequency envelope monitoring. Two optimized operations are implemented. First, the use of balanced photodetection cancels out the beat components generated by the signals under test (SUT) themselves, so as to exclude frequency misjudgment. Second, a reference signal is introduced to map the SUT frequency to a relative time difference instead of an absolute time value, avoiding the measuring bias caused by time synchronization. As a result, the proposed scheme with improved robustness could be attractive for future practical applications. An experiment is performed. Microwave frequency measurement from 16 to 26 GHz is demonstrated, with an average error of 7.53 MHz.

2.
Micromachines (Basel) ; 14(2)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36838039

RESUMO

A photonic approach to the cancellation of self-interference in the optical domain with fiber dispersion immunity and harmonic frequency down-conversion function is proposed based on an integrated, dual-parallel, dual-drive Mach-Zehnder modulator (DP-DMZM). A dual-drive Mach-Zehnder modulator (DMZM) is used as an optical interference canceller, which cancels the self-interference from the impaired signal before fiber transmission to avoid the effect of fiber transmission on the cancellation performance. Another DMZM is used to provide carrier-suppressed, local-oscillation (LO)-modulated, high-order double optical sidebands for harmonic frequency down-conversion to release the strict demand for high-frequency LO sources. By regulating the DC bias of the main modulator, the signal of interest (SOI) can be down-converted to the intermediated frequency (IF) band after photoelectric conversion with improved frequency-conversion efficiency, immunity to the fiber-dispersion-induced power-fading (DIPF) effect, and effective signal recovery. Theoretical analyses and simulation results show that the desired SOI in the X and K bands with a bandwidth of 500 MHz and different modulation formats can be down-converted to the IF frequency. The self-interference noise with the 2 GHz bandwidth is canceled, and successful signal recovery is achieved after a 10 km fiber transmission. The recovery performance of down-converted signals and the self-interference cancellation depth under different interference-to-signal ratios (ISRs) is also investigated. In addition, the compensation performance of DIPF is verified, and a 6 dB improvement in frequency conversion gain is obtained compared with previous work. The proposed scheme is compact, cost-effective, and thus superior in wideband self-interference cancellation, long-range signal transmission, and effective recovery of weak desired signals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA