Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(28): e2400017, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38342597

RESUMO

The electron-phonon (e-ph) interactions are pivotal in shaping the electrical and thermal properties, and in particular, determining the carrier dynamics and transport behaviors in optoelectronic devices. By employing pump-probe spectroscopy and ultrafast microscopy, the consequential role of e-ph coupling strength in the spatiotemporal evolution of hot electrons is elucidated. Thermal transport across the metallic interface is controlled to regulate effective e-ph coupling factor Geff in Au and Au/Cr heterostructure, and their impact on nonequilibrium transport of hot electrons is examined. Via the modulation of buried Cr thickness, a strong correlation between Geff and the diffusive behavior of hot electrons is found. By enhancing Geff through the regulation of thermal transport across interface, there is a significant reduction in e-ph thermalization time, the maximum diffusion length of hot electrons, and lattice heated area which are extracted from the spatiotemporal evolution profiles. Therefore, the increased Geff significantly weakens the diffusion of hot electrons and promotes heat relaxation of electron subsystems in both time and space. These insights propose a robust framework for spatiotemporal investigations of G impact on hot electron diffusion, underscoring its significance in the rational design of advanced optoelectronic devices with high efficiency.

2.
FASEB J ; 37(4): e22878, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36939278

RESUMO

Retinal fibrosis is a severe pathological change in the late stage of diabetic retinopathy and is also the leading cause of blindness. We have previously revealed that N-cadherin was significantly increased in type 1 and type 2 diabetic mice retinas and the fibrovascular membranes from proliferative diabetic retinopathy (PDR) patients. However, whether N-cadherin directly induces retinal fibrosis in DR and the related mechanism is unknown. Here, we investigated the pathogenic role of N-cadherin in mediating retinal fibrosis and further explored the relevant therapeutic targets. We found that the level of N-cadherin was significantly increased in PDR patients and STZ-induced diabetic mice and positively correlated with the fibrotic molecules Connective Tissue Growth Factor (CTGF) and fibronectin (FN). Moreover, intravitreal injection of N-cadherin adenovirus significantly increased the expression of FN and CTGF in normal mice retinas. Mechanistically, overexpression of N-cadherin promotes N-cadherin cleavage, and N-cadherin cleavage can further induce translocation of non-p-ß-catenin in the nucleus and upregulation of fibrotic molecules. Furthermore, we found a novel N-cadherin cleavage inhibitor, pigment epithelial-derived factor (PEDF), which ameliorated the N-cadherin cleavage and subsequent retinal fibrosis in diabetic mice. Thus, our findings provide novel evidence that elevated N-cadherin level not only acts as a classic EMT maker but also plays a causative role in diabetic retinal fibrosis, and targeting N-cadherin cleavage may provide a strategy to inhibit retinal fibrosis in DR patients.


Assuntos
Caderinas , Diabetes Mellitus Experimental , Retinopatia Diabética , Animais , Humanos , Camundongos , beta Catenina/metabolismo , Caderinas/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Retinopatia Diabética/metabolismo , Fibrose
3.
Cell Commun Signal ; 22(1): 78, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291510

RESUMO

BACKGROUND: Renal fibrosis significantly contributes to the progressive loss of kidney function in chronic kidney disease (CKD), with alternatively activated M2 macrophages playing a crucial role in this progression. The serum succinate level is consistently elevated in individuals with diabetes and obesity, both of which are critical factors contributing to CKD. However, it remains unclear whether elevated succinate levels can mediate M2 polarization of macrophages and contribute to renal interstitial fibrosis. METHODS: Male C57/BL6 mice were administered water supplemented with 4% succinate for 12 weeks to assess its impact on renal interstitial fibrosis. Additionally, the significance of macrophages was confirmed in vivo by using clodronate liposomes to deplete them. Furthermore, we employed RAW 264.7 and NRK-49F cells to investigate the underlying molecular mechanisms. RESULTS: Succinate caused renal interstitial macrophage infiltration, activation of profibrotic M2 phenotype, upregulation of profibrotic factors, and interstitial fibrosis. Treatment of clodronate liposomes markedly depleted macrophages and prevented the succinate-induced increase in profibrotic factors and fibrosis. Mechanically, succinate promoted CTGF transcription via triggering SUCNR1-p-Akt/p-GSK3ß/ß-catenin signaling, which was inhibited by SUCNR1 siRNA. The knockdown of succinate receptor (SUCNR1) or pretreatment of anti-CTGF(connective tissue growth factor) antibody suppressed the stimulating effects of succinate on RAW 264.7 and NRK-49F cells. CONCLUSIONS: The causative effects of succinate on renal interstitial fibrosis were mediated by the activation of profibrotic M2 macrophages. Succinate-SUCNR1 played a role in activating p-Akt/p-GSK3ß/ß-catenin, CTGF expression, and facilitating crosstalk between macrophages and fibroblasts. Our findings suggest a promising strategy to prevent the progression of metabolic CKD by promoting the excretion of succinate in urine and/or using selective antagonists for SUCNR1.


Assuntos
Insuficiência Renal Crônica , beta Catenina , Masculino , Camundongos , Animais , beta Catenina/metabolismo , Ácido Succínico/metabolismo , Lipossomos/metabolismo , Ácido Clodrônico/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Insuficiência Renal Crônica/metabolismo , Fibrose , Macrófagos/metabolismo
4.
PLoS Biol ; 19(8): e3001348, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34351905

RESUMO

Beige fat dissipates energy and functions as a defense against cold and obesity, but the mechanism for its development is unclear. We found that interleukin (IL)-25 signaling through its cognate receptor, IL-17 receptor B (IL-17RB), increased in adipose tissue after cold exposure and ß3-adrenoceptor agonist stimulation. IL-25 induced beige fat formation in white adipose tissue (WAT) by releasing IL-4 and IL-13 and promoting alternative activation of macrophages that regulate innervation and up-regulate tyrosine hydroxylase (TH) up-regulation to produce more catecholamine including norepinephrine (NE). Blockade of IL-4Rα or depletion of macrophages with clodronate-loaded liposomes in vivo significantly impaired the beige fat formation in WAT. Mice fed with a high-fat diet (HFD) were protected from obesity and related metabolic disorders when given IL-25 through a process that involved the uncoupling protein 1 (UCP1)-mediated thermogenesis. In conclusion, the activation of IL-25 signaling in WAT may have therapeutic potential for controlling obesity and its associated metabolic disorders.


Assuntos
Adipócitos Bege/fisiologia , Tecido Adiposo Bege/crescimento & desenvolvimento , Resistência à Insulina , Interleucinas/metabolismo , Macrófagos/fisiologia , Agonistas de Receptores Adrenérgicos beta 3 , Animais , Temperatura Baixa , Homeostase , Interleucina-4/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Proteína Desacopladora 1/fisiologia
5.
Pharmacol Res ; 202: 107145, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492829

RESUMO

In many neurodegenerative disorders, such as Alzheimer's disease (AD), glutamate-mediated neuronal excitotoxicity is considered the basis for cognitive impairment. The mRNA and protein expression of SERPINA4(Kallistatin) are higher in patients with AD. However, whether Kallistatin plays a regulatory role in glutamate-glutamine cycle homeostasis remains unclear. In this study, we identified impaired cognitive function in Kallistatin transgenic (KAL-TG) mice. Baseline glutamate levels were elevated and miniature excitatory postsynaptic current (mEPSC) frequency was increased in the hippocampus, suggesting the impairment of glutamate homeostasis in KAL-TG mice. Mechanistically, we demonstrated that Kallistatin promoted lysine acetylation and ubiquitination of glutamine synthetase (GS) and facilitated its degradation via the proteasome pathway, thereby downregulating GS. Fenofibrate improved cognitive memory in KAL-TG mice by downregulating serum Kallistatin. Collectively, our study findings provide insights the mechanism by which Kallistatin regulates cognitive impairment, and suggest the potential of fenofibrate to prevente and treat of AD patients with high levels of Kallistatin.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Fenofibrato , Serpinas , Humanos , Camundongos , Animais , Glutamato-Amônia Ligase/metabolismo , Doença de Alzheimer/metabolismo , Camundongos Transgênicos , Ácido Glutâmico/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Cognição
6.
Am J Physiol Cell Physiol ; 324(2): C467-C476, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36622070

RESUMO

Succinate has long been known to be only an intermediate product of the tricarboxylic acid cycle until identified as a natural ligand for SUCNR1 in 2004. SUCNR1 is widely expressed throughout the body, especially in the kidney. Abnormally elevated succinate is associated with many diseases, including obesity, type 2 diabetes, nonalcoholic fatty liver disease, and ischemia injury, but it is not known whether succinate can cause kidney damage. This study showed that succinate induced apparent renal injury after treatment for 12 wk, characterized by a reduction in 24 h urine and the significant detachment of the brush border of proximal tubular epithelial cells, tubular dilation, cast formation, and vacuolar degeneration of tubular cells in succinate-treated mice. Besides, succinate caused tubular epithelial cell apoptosis in kidneys and HK-2 cells. Mechanistically, succinate triggered cell apoptosis via SUCNR1 activation. In addition, succinate upregulated ERK by binding to SUCNR1, and inhibition of ERK using PD98059 abolished the proapoptotic effects of succinate in HK-2 cells. In summary, our study provides the first evidence that succinate acts as a risk factor and contributes to renal injury, and further research is required to discern the pathological effects of succinate on renal functions.


Assuntos
Diabetes Mellitus Tipo 2 , Ácido Succínico , Animais , Camundongos , Apoptose , Diabetes Mellitus Tipo 2/patologia , Células Epiteliais/metabolismo , Rim/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Succinatos , Ácido Succínico/metabolismo
7.
Proc Natl Acad Sci U S A ; 117(23): 13012-13022, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32444490

RESUMO

Metastatic colorectal cancer (mCRC) patients have poor overall survival despite using irinotecan- or oxaliplatin-based chemotherapy combined with anti-EGFR (epidermal growth factor receptor) drugs, especially those with the oncogene mutation of KRAS Metformin has been reported as a potentially novel antitumor agent in many experiments, but its therapeutic activity is discrepant and controversial so far. Inspiringly, the median survival time for KRAS-mutation mCRC patients with diabetes on metformin is 37.8 mo longer than those treated with other hypoglycemic drugs in combination with standard systemic therapy. In contrast, metformin could not improve the survival of mCRC patients with wild-type KRAS Interestingly, metformin is preferentially accumulated in KRAS-mutation mCRC cells, but not wild-type ones, in both primary cell cultures and patient-derived xenografts, which is in agreement with its tremendous effect in KRAS-mutation mCRC. Mechanistically, the mutated KRAS oncoprotein hypermethylates and silences the expression of multidrug and toxic compound extrusion 1 (MATE1), a specific pump that expels metformin from the tumor cells by up-regulating DNA methyltransferase 1 (DNMT1). Our findings provide evidence that KRAS-mutation mCRC patients benefit from metformin treatment and targeting MATE1 may provide a strategy to improve the anticancer response of metformin.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Metformina/farmacologia , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Neoplasias Colorretais/genética , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Metformina/uso terapêutico , Camundongos , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Biochem Biophys Res Commun ; 585: 146-154, 2021 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-34808498

RESUMO

Age-related macular degeneration (AMD) is a common cause of vision loss. The epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells, accompanied by oxidative damage, plays a crucial role in AMD. It is well known that manganese superoxide dismutase (MnSOD) encoded by SOD2 is a critical molecule in fighting against oxidative stress, and Snail encoded by SNAI1 is the essential transcription factor for EMT. However, the effect of MnSOD on EMT and the underlying mechanism in RPE cells remains unknown. In this study, we found that MnSOD knockdown triggered the EMT by upregulating Snail, while MnSOD overexpression reversed EMT even with TGFß treatment in RPE cells, and the anti-oxidative stress activity of MnSOD mediated this observation. In addition, Snail depletion increased both expression and activity of MnSOD while Snail overexpression decreased MnSOD expression and activity, and Dual-luciferase reporter and ChIP assays showed that Snail directly bound to E-box (CACCTG) in the SOD2 promoter. Moreover, MnSOD over-expression and Snail interference co-treatment strengthened the anti-oxidation and EMT reversing. Therefore, our findings demonstrate that MnSOD prevents EMT of RPE cells in AMD through inhibiting oxidative injury to RPE. Moreover, a critical EMT transcription factor, Snail, functions as a new negative transcriptional factor of SOD2. Herein, the Snail-MnSOD axis forms a mutual loop in the development of AMD, which may be a novel systemic treatment target for preventing AMD.


Assuntos
Biomarcadores/metabolismo , Transição Epitelial-Mesenquimal/genética , Degeneração Macular/genética , Epitélio Pigmentado da Retina/metabolismo , Fatores de Transcrição da Família Snail/genética , Superóxido Dismutase/genética , Western Blotting , Linhagem Celular , Células Epiteliais/metabolismo , Regulação da Expressão Gênica , Humanos , Degeneração Macular/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/citologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição da Família Snail/metabolismo , Superóxido Dismutase/metabolismo
9.
Diabetologia ; 63(9): 1857-1871, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32377760

RESUMO

AIMS/HYPOTHESIS: Diabetes mellitus erectile dysfunction (DMED) is a common complication of diabetes. The level of pigment epithelium-derived factor (PEDF) is significantly upregulated in the serum of individuals with obesity and diabetes. However, whether elevated PEDF levels contribute to DMED remains unknown. This study aimed to investigate the pathogenic role of PEDF and its related mechanism in DMED. METHODS: We enrolled 65 men, of whom 20 were nondiabetic control participants, 21 participants with diabetes but without erectile dysfunction, and 24 with DMED. The International Index of Erectile Function (IIEF-5) questionnaire was administered to evaluate erectile function. Plasma PEDF in diabetic participants and streptozotocin (STZ)-induced diabetic animals was detected by ELISA. Erectile function was evaluated by measuring the intracavernous pressure (ICP) and the ICP/mean arterial pressure (MAP) ratio in STZ-induced diabetic rats treated with PEDF-neutralising antibody (PEDF-Ab), db/db mice treated with PEDF-Ab, and Pedf knockout mice with STZ-induced diabetes. The overexpression of PEDF was implemented by intraperitoneal injection of recombinant PEDF and intracavernous injection of PEDF-expressing adenovirus. A mechanistic study was performed by immunofluorescence staining, bimolecular fluorescence complementation (BiFC), immunoprecipitation and western blotting. RESULTS: We found that the plasma level of PEDF was significantly higher in participants with DMED compared with diabetic counterparts without erectile dysfunction and nondiabetic controls. Interestingly, PEDF levels were negatively correlated with plasma nitrite/nitrate levels and erectile function in DMED patients and STZ-induced diabetic rats. Furthermore, overexpression of PEDF significantly suppressed ICP and endothelial nitric oxide synthase (eNOS) phosphorylation in control rats. In contrast, the PEDF-Ab and Pedf knockout ameliorated ICP and eNOS phosphorylation in diabetic rats and mice. Mechanistically, PEDF promoted the membrane translocation of Hsp90ß and directly bound to the amino acid residues 341-724 of Hsp90ß on the endothelial cell surface, subsequently blocking intracellular Hsp90ß/Akt/eNOS complex formation and downregulating eNOS phosphorylation. CONCLUSIONS/INTERPRETATION: These results indicate that elevated PEDF levels contribute to impaired erectile function by suppressing Hsp90ß-mediated eNOS phosphorylation and that PEDF may represent a novel therapeutic target for diabetic erectile dysfunction. Graphical abstract.


Assuntos
Complicações do Diabetes/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus/metabolismo , Disfunção Erétil/metabolismo , Proteínas do Olho/metabolismo , Fatores de Crescimento Neural/metabolismo , Serpinas/metabolismo , Adulto , Animais , Anticorpos Neutralizantes/farmacologia , Estudos de Casos e Controles , Complicações do Diabetes/genética , Diabetes Mellitus Experimental/complicações , Disfunção Erétil/etiologia , Disfunção Erétil/genética , Proteínas do Olho/genética , Técnicas de Introdução de Genes , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Fatores de Crescimento Neural/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Serpinas/genética
10.
J Clin Lab Anal ; 34(4): e23129, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31774215

RESUMO

BACKGROUND: Gestational diabetes mellitus (GDM) is characterized as glucose intolerance of any degree that begins or first diagnosed during pregnancy. It possesses a higher risk of haemorrhage, which may be caused by the coagulation dysfunction. However, there has been no study focus on how coagulation state changes in the progress of GDM pregnancy. Our study is aimed to assess the association of coagulation function and haemorrhage in GDM. METHODS: A total of 662 subjects (273 from a population-based study and 389 from a prospective cohort study) were selected to measure mean platelet volume (MPV), platelet distribution width (PDW), platelet (PLT), thrombocytocrit (PCT), prothrombin time (PT), activated partial thromboplastin time (APTT), thrombin time (TT), and fibrinogen (FIB). All pregnant individuals were divided into normal glucose tolerance (NGT) controls and GDM patients diagnosed between the 24th and 28th weeks of gestation. RESULTS: Compared with NGT controls, GDM females showed shortened PT, shortened APTT, and increased blood FIB levels, while the platelet parameters MPV, PDW, PLT, and PCT remained unchanged in mid-pregnancy. By late pregnancy, the platelet parameters MPV, PDW, and PCT were increased in the GDM group compared with the NGT group, while PT and APTT were unchanged. CONCLUSIONS: The GDM group was hypercoagulable compared with the NGT group rather than hypocoagulable as predicted, but still within the normal range. Therefore, our findings demonstrate that the variation degree of coagulation function is not responsible for extra risk of hemorrhage in GDM, and prevention of hemorrhage should focus on other causes.


Assuntos
Coagulação Sanguínea/fisiologia , Diabetes Gestacional/sangue , Complicações Hematológicas na Gravidez/etiologia , Hemorragia Uterina/etiologia , Adulto , Feminino , Humanos , Volume Plaquetário Médio , Tempo de Tromboplastina Parcial , Gravidez , Estudos Prospectivos , Tempo de Protrombina , Fatores de Risco
11.
Biochem Biophys Res Commun ; 514(1): 295-300, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31030945

RESUMO

Neuroblastoma (NB), the most common extracranial solid tumor in childhood, always leads to an unfavorable prognosis. ß3-adrenergic receptor (ß3-AR) signaling plays an important role in lipid metabolism. Although previous studies have focused mainly on the role of ß2-AR in tumor cells; there are few studies about the cancer-related function of ß3-AR. Herein, we showed that ß3-AR expression was significantly increased in clinical NB tissue compared with that in the less malignant ganglioneuroma (GN) and ganglioneuroblastoma (GNB) tissues. Further cellular assays demonstrated that treatment of NB cells with SR59230A (a specific ß3-AR antagonist) suppressed NB cells growth and colony formation, and siRNA knockdown of ß3-AR expression also inhibited NB cell proliferation. The mechanistic study revealed that ß3-AR knockdown and SR59230A inhibited the phosphorylation and thereby the activation of the mTOR/p70S6K pathway. Activation of the mTOR pathway with the activator MHY1485 reversed the inhibitory effect of SR59230A on NB cell growth. Above all, our study clarifies a novel regulatory role of ß3-AR in NB cell growth and provides a potent therapeutic strategy for this disease by specific targeting of the ß3-AR pathway.


Assuntos
Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Receptores Adrenérgicos beta 3/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Antagonistas de Receptores Adrenérgicos beta 3/farmacologia , Proliferação de Células/efeitos dos fármacos , Epinefrina/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Terapia de Alvo Molecular , Morfolinas/farmacologia , Neuroblastoma/patologia , Propanolaminas/farmacologia , Receptores Adrenérgicos beta 3/genética , Transdução de Sinais/efeitos dos fármacos , Triazinas/farmacologia , Células Tumorais Cultivadas
12.
Biochem Biophys Res Commun ; 514(3): 861-867, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31084927

RESUMO

Macrophages infiltrated in adipose tissue play a key role in obesity. Some traditional pharmaceutical compounds may shift the polarization of recruited macrophages to improve metabolic homeostasis. TanshinoneⅡA (TAN2A) is a major active component of Salvia miltiorrhiza, a traditional anti-inflammatory cardiovascular medicine. In our study, we firstly constructed a phenanthroimidazole derivative of TAN2A named TAN20 by chemical synthesis, then identified its structure by chromatography and hydrogen spectroscopy, and finally examined its effects on immunometabolic responses. We found that TAN20 significantly induced the alternatively-activated (M2) rather than the classically-activated macrophages (M1), mainly through releasing the type II cytokines. Such effects were more pronounced than that from TAN2A. Compared to TAN2A, TAN20 substantially reduced body weight, decreased serum free fatty acid and HOMA-IR, and increased insulin sensitivity in obesity-induced diabetic mice. These effects of TAN20 were further validated on diabetic cynomolgus monkeys, which are closer to human physiological conditions. Taken together, our findings explicitly showed that TAN20 significantly polarized the macrophage and improved metabolic homeostasis in obesity-induced diabetic models, suggesting that TAN20 may be a potential drug against diabetes and obesity.


Assuntos
Abietanos/farmacologia , Tecido Adiposo/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Hipoglicemiantes/farmacologia , Obesidade/tratamento farmacológico , Fenantrenos/farmacologia , Abietanos/química , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Fármacos Antiobesidade/química , Glicemia/metabolismo , Peso Corporal/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Citocinas/sangue , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos não Esterificados/sangue , Humanos , Hipoglicemiantes/química , Insulina/sangue , Resistência à Insulina , Macaca fascicularis , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/sangue , Obesidade/etiologia , Obesidade/genética , Fenantrenos/química , Células RAW 264.7
13.
Cell Commun Signal ; 17(1): 60, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31182110

RESUMO

BACKGROUND: The accumulation of M1-polarized macrophages and excessive inflammation are important in the pathogenesis of diabetic foot ulcer (DFU). However, the underlying mechanism of DFU pathogenesis and the crucial regulators of DFU are less well known. Our previous study reported that kallikrein-binding protein (KBP), an angiogenesis inhibitor, was significantly upregulated in diabetic patients compared to its levels in controls. The effects of KBP on monocyte chemotaxis and macrophage M1 polarization were elucidated in this study. METHODS: Plasma KBP levels and monocyte counts were assessed by ELISA and flow cytometry. Wound closure rates in different groups were monitored daily. The phenotype and recruitment of macrophages were measured by real-time PCR, western blot and immunofluorescence assays. The expression of Notch and NF-κB signalling pathway members was determined by the methods mentioned above. ChIP and dual-luciferase reporter gene assays were employed to explore the binding and transcriptional regulation of Hes1 and iNOS. RESULTS: We found that plasma KBP levels and circulating monocytes were elevated in diabetic patients compared to those in nondiabetic controls, and both were higher in diabetic patients with DFU than in diabetic patients without DFU. KBP delayed wound healing in normal mice; correspondingly, KBP-neutralizing antibody ameliorated delayed wound healing in diabetic mice. Circulating monocytes and macrophage infiltration in the wound were upregulated in KBP-TG mice compared to those in control mice. KBP promoted the recruitment and M1 polarization of macrophages. Mechanistically, KBP upregulated iNOS by activating the Notch1/RBP-Jκ/Hes1 signalling pathway. Hes1 downregulated CYLD, a negative regulator of NF-κB signalling, and then activated the IKK/IκBα/NF-κB signalling pathway. CONCLUSIONS: Our findings demonstrate that KBP is the key regulator of excessive inflammation in DFUs and provide a novel target for DFU therapy.


Assuntos
Pé Diabético/metabolismo , Macrófagos/citologia , Serpinas/metabolismo , Cicatrização , Animais , Diferenciação Celular , Células Cultivadas , Quimiotaxia , Humanos , Macrófagos/metabolismo , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Receptores Notch/metabolismo , Serpinas/genética , Fatores de Transcrição HES-1/metabolismo , Regulação para Cima
14.
Electron J Biotechnol ; 41: 56-59, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32288149

RESUMO

BACKGROUND: Chinese hamster ovary (CHO) cells are the most dependable mammalian cells for the production of recombinant proteins. Replication-incompetent retroviral vector (retrovector) is an efficient tool to generate stable cell lines. Multiple copies of integrated genes by retrovector transduction results in improved recombinant protein yield. HEK-293 and their genetic derivatives are principal cells for retrovector production. Retrovectors packaged in HEK-293 cells pose a risk of infectious agent transmission, such as viruses and mycoplasmas, from serum and packaging cells. RESULTS: In this report, retrovectors were packaged in CHO cells cultured in chemically defined (CD) media. The retrovectors were then used to transduce CHO cells. This method can block potential transmission of infectious agents from serum and packaging cells. With this method, we generated glucagon-like protein-1 Fc fusion protein (GLP-1-Fc) stable expression CHO cell lines. Productivity of GLP-1-Fc can reach 3.15 g/L. The GLP-1-Fc protein produced by this method has comparable bioactivity to that of dulaglutide (Trulicity). These stable cell lines retain 95-100% of productivity after 40 days of continuous culture (~ 48-56 generations). CONCLUSIONS: Suspension CHO cells are clean, safe, and reliable cells for retrovector packaging. Retrovectors packaged from this system could be used to generate CHO stable cell lines for recombinant protein expression.How to cite: Li J, Wei S, Cao C, et al. Retrovectors packaged in CHO cells to generate GLP-1-Fc stable expression CHO cell lines. Electron J Biotechnol 2019;41. https://doi.org/10.1016/j.ejbt.2019.07.002.

15.
Cancer Sci ; 109(6): 1981-1994, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29664206

RESUMO

Infantile hemangioma (IH) is a benign tumor that is formed by aberrant angiogenesis and that undergoes spontaneous regression over time. Propranolol, the first-line therapy for IH, inhibits angiogenesis by downregulating activation of the vascular endothelial growth factor (VEGF) pathway, which is hyperactivated in IH. However, this treatment is reportedly ineffective for 10% of tumors, and 19% of patients relapse after propranolol treatment. Both pro-angiogenic and anti-angiogenic factors regulate angiogenesis, and pigment epithelium-derived factor (PEDF) is the most effective endogenous anti-angiogenic factor. PEDF/VEGF ratio controls many angiogenic processes, but its role in IH and the relationship between this ratio and propranolol remain unknown. Results of the present study showed that the PEDF/VEGF ratio increased during the involuting phase of IH compared with the proliferating phase. Similarly, in hemangioma-derived endothelial cells (HemEC), which were isolated with magnetic beads, increasing the PEDF/VEGF ratio inhibited proliferation, migration, and tube formation and promoted apoptosis. Mechanistically, the VEGF receptors (VEGFR1 and VEGFR2) and PEDF receptor (laminin receptor, LR) were highly expressed in both IH tissues and HemEC, and PEDF inhibited HemEC function by binding to LR. Interestingly, we found that propranolol increased the PEDF/VEGF ratio but did so by lowering VEGF expression rather than by upregulating PEDF as expected. Furthermore, the combination of PEDF and propranolol had a more suppressive effect on HemEC. Consequently, our results suggested that the PEDF/VEGF ratio played a pivotal role in the spontaneous regression of IH and that the combination of PEDF and propranolol might be a promising treatment strategy for propranolol-resistant IH.


Assuntos
Proteínas do Olho/metabolismo , Hemangioma/tratamento farmacológico , Fatores de Crescimento Neural/metabolismo , Propranolol/uso terapêutico , Serpinas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/farmacologia , Hemangioma/irrigação sanguínea , Hemangioma/metabolismo , Humanos , Lactente , Neovascularização Patológica/metabolismo , Neovascularização Patológica/prevenção & controle , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/farmacologia , Receptores de Laminina/genética , Receptores de Laminina/metabolismo , Remissão Espontânea , Serpinas/genética , Serpinas/farmacologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/farmacologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Vasodilatadores/uso terapêutico
16.
Gastric Cancer ; 21(4): 617-631, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29243194

RESUMO

BACKGROUND: Tumor-induced lymphangiogenesis and lymphatic metastasis are predominant during the metastasis of many types of cancers. However, the endogenous inhibitors that counterbalance the lymphangiogenesis and lymphatic metastasis of tumors have not been well evaluated. Kallistatin has been recognized as an endogenous angiogenesis inhibitor. METHODS AND RESULTS: Our recent study showed for the first time that the lymphatic vessel density (LVD) was reduced in lung and stomach sections from kallistatin-overexpressing transgenic mice. Kallistatin expresses anti-lymphangiogenic activity by inhibiting the proliferation, migration, and tube formation of human lymphatic endothelial cells (hLECs). Therefore, the present study focuses on the relationships of changes in kallistatin expression with the lymphangiogenesis and lymphatic metastasis of gastric cancer and its underlying mechanisms. Our results revealed that the expression of kallistatin in cancer tissues, metastatic lymph nodes, and plasma of gastric cancer patients was significantly downregulated and that the plasma level of kallistatin was negatively associated with the phase of lymph node metastasis. Furthermore, treatment with kallistatin recombinant protein decreased LVD and lymph node metastases in the implanted gastric xenograft tumors of nude mice. Mechanically, kallistatin suppressed the lymphangiogenesis and lymphatic metastasis by downregulating VEGF-C expression and secretion through the LRP6/IKK/IÒ¡B/NF-Ò¡B signaling pathway in gastric cancer cells. CONCLUSIONS: These findings demonstrated that kallistatin functions as an endogenous lymphangiogenesis inhibitor and has an important part in the lymphatic metastasis of gastric cancer.


Assuntos
Linfangiogênese/fisiologia , Serpinas/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Idoso , Animais , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Metástase Linfática/patologia , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Serpinas/sangue , Serpinas/genética , Serpinas/farmacologia , Neoplasias Gástricas/tratamento farmacológico
17.
Toxicol Ind Health ; 32(7): 1286-92, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25427687

RESUMO

Nickel compounds are an important class of environmental pollutants and carcinogens. Chronic exposure to nickel compounds has been connected with increased risks of numerous cancers, including lung and kidney cancers. But the precise mechanism by which nickel compounds exert their carcinogenic properties is not completely understood. In this study, kidney cancer cells namely human embryonic kidney 293-containing SV40 large T-antigen (HEK293T) and 786-0 were incubated with various concentrations of nickel chloride for 24 h before analysing the expression of three histone H3K27 methylation-modifying enzymes and H3K27me3 using quantitative real-time polymerase chain reaction, Western blot and immunofluorescence analyses. Our results showed that incubation of nickel chloride upregulated the expression of H3K27me3 demethylase jumonji domain-containing protein 3 (JMJD3) in kidney cancer cells, which was accompanied by the reduction in the protein level of H3K27me3. Enhanced demethylation of H3K27me3 may represent a novel mechanism underlying the carcinogenicity of nickel compounds.


Assuntos
Histona Desmetilases com o Domínio Jumonji/metabolismo , Rim/efeitos dos fármacos , Níquel/toxicidade , Células HEK293 , Histonas/metabolismo , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Rim/citologia , Rim/patologia , Neoplasias Renais , Metilação , Regulação para Cima
18.
Am J Physiol Cell Physiol ; 308(5): C349-58, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25500739

RESUMO

Nestin is highly expressed in poorly differentiated and newly formed proliferating endothelial cells (ECs); however, the role of this protein in angiogenesis remains unknown. Additionally, the cytoskeleton and associated cytoskeleton-binding proteins mediate the migration of vascular ECs. Therefore, the aim of the present study was to determine whether VEGF regulates the cytoskeleton, as well as other associated proteins, to promote the migration of vascular ECs. The coexpression of nestin and CD31 during angiogenesis in alkali-burned rat corneas was examined via immunohistochemical analysis. Western blot analyses revealed that the exposure of human umbilical vein endothelial cells (HUVECs) to hypoxia promoted nestin expression in vitro. Additionally, nestin silencing via siRNA significantly inhibited many of the process associated with VEGF-induced angiogenesis, including tube formation and the migration and proliferation of HUVECs. Moreover, FITC-phalloidin labeling revealed that F-actin filaments were successfully organized into microfilaments in VEGF-treated cells, suggesting a network rearrangement accomplished via F-actin that contrasted with the uniform and loose actin filament network observed in the siRNA-nestin cells. The results of the present study highlight the key role played by nestin in activated HUVECs during angiogenesis. The inhibition of the ERK pathway suppressed the nestin expression induced by VEGF in the HUVECs. Therefore, our study provides the first evidence that nestin-mediated cytoskeleton remodeling in ECs occurs via filopodia formation along the cell edge, facilitating both filopodia localization and cell polarization and ultimately promoting HUVEC migration via VEGF induction, which may be associated with ERK pathway activation.


Assuntos
Indutores da Angiogênese/farmacologia , Movimento Celular/fisiologia , Citoesqueleto/fisiologia , Células Endoteliais/fisiologia , Nestina/fisiologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Citoesqueleto/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Pseudópodes/efeitos dos fármacos , Pseudópodes/fisiologia , Ratos , Ratos Sprague-Dawley
19.
J Biol Chem ; 289(44): 30785-30799, 2014 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-25225287

RESUMO

Pigment epithelium-derived factor (PEDF), a potent antiangiogenesis agent, has recently attracted attention for targeting tumor cells in several types of tumors. However, less is known about the apoptosis-inducing effect of PEDF on human lung cancer cells and the underlying molecular events. Here we report that PEDF has a growth-suppressive and proapoptotic effect on lung cancer xenografts. Accordingly, in vitro, PEDF apparently induced apoptosis in A549 and Calu-3 cells, predominantly via the Fas-L/Fas death signaling pathway. Interestingly, A549 and Calu-3 cells are insensitive to the Fas-L/Fas apoptosis pathway because of the low level of cell surface Fas. Our results revealed that, in addition to the enhancement of Fas-L expression, PEDF increased the sensitivity of A549 and Calu-3 cells to Fas-L-mediated apoptosis by triggering the translocation of Fas protein to the plasma membrane in a p53- and FAP-1-dependent manner. Similarly, the up-regulation of Fas-L by PEDF was also mediated by p53. Furthermore, peroxisome proliferator-activated receptor γ was determined to be the upstream regulator of p53. Together, these findings uncover a novel mechanism of tumor cell apoptosis induced by PEDF and provide a potential therapeutic strategy for tumors that are insensitive to Fas-L/Fas-dependent apoptosis because of a low level of cell surface Fas.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Proteínas do Olho/farmacologia , Proteína Ligante Fas/genética , Fatores de Crescimento Neural/farmacologia , Serpinas/farmacologia , Proteína Supressora de Tumor p53/fisiologia , Receptor fas/metabolismo , Animais , Antineoplásicos/uso terapêutico , Caspase 8/metabolismo , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proteínas do Olho/fisiologia , Proteínas do Olho/uso terapêutico , Proteína Ligante Fas/metabolismo , Humanos , Neoplasias Pulmonares , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Neovascularização Patológica/prevenção & controle , Fatores de Crescimento Neural/fisiologia , Fatores de Crescimento Neural/uso terapêutico , PPAR gama/metabolismo , Transporte Proteico , Proteína Tirosina Fosfatase não Receptora Tipo 13/metabolismo , Serpinas/fisiologia , Serpinas/uso terapêutico , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Biol Chem ; 289(47): 32628-38, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25296756

RESUMO

Human plasminogen kringle 5 (K5) is known to display its potent anti-angiogenesis effect through inducing endothelial cell (EC) apoptosis, and the voltage-dependent anion channel 1 (VDAC1) has been identified as a receptor of K5. However, the exact role and underlying mechanisms of VDAC1 in K5-induced EC apoptosis remain elusive. In the current study, we showed that K5 increased the protein level of VDAC1, which initiated the mitochondrial apoptosis pathway of ECs. Our findings also showed that K5 inhibited the ubiquitin-dependent degradation of VDAC1 by promoting the phosphorylation of VDAC1, possibly at Ser-12 and Thr-107. The phosphorylated VDAC1 was attenuated by the AKT agonist, glycogen synthase kinase (GSK) 3ß inhibitor, and siRNA, suggesting that K5 increased VDAC1 phosphorylation via the AKT-GSK3ß pathway. Furthermore, K5 promoted cell surface translocation of VDAC1, and binding between K5 and VDAC1 was observed on the plasma membrane. HKI protein blocked the impact of K5 on the AKT-GSK3ß pathway by competitively inhibiting the interaction of K5 and cell surface VDAC1. Moreover, K5-induced EC apoptosis was suppressed by VDAC1 antibody. These data show for the first time that K5-induced EC apoptosis is mediated by the positive feedback loop of "VDAC1-AKT-GSK3ß-VDAC1," which may provide new perspectives on the mechanisms of K5-induced apoptosis.


Assuntos
Apoptose/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Fragmentos de Peptídeos/farmacologia , Plasminogênio/farmacologia , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Apoptose/genética , Western Blotting , Caspases/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Retroalimentação Fisiológica/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Células HEK293 , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fragmentos de Peptídeos/genética , Fosforilação/efeitos dos fármacos , Plasminogênio/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Ubiquitina/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA