Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
BMC Microbiol ; 22(1): 200, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974308

RESUMO

Vibrio vulnificus is a pathogenic bacterium that causes disease in marine fish, affecting fish farming and human health worldwide. In May 2021, in the Bohai Bay region, a disease broke out in commercially farmed pearl gentian grouper (♀Epinephelus fuscoguttatus × â™‚Epinephelus lanceolatus), causing huge economic losses. The diseased fish had skin lesions, water accumulation in their abdomens, and showed tissue and organ damage. V. vulnificus biotype 2 has been reported in eels and other marine fish, but it is less reported in pearl gentian grouper. In this study, the pathogenic strain isolated from diseased fish was identified as V. vulnificus EPL 0201 biotype 2 on the basis of physiological and biochemical characteristics and the results of 16S rRNA gene and gyrB sequencing, virulence gene detection, and recursive infection experiments. To gain a comprehensive understanding of the pathogenicity and drug resistance of this strain, whole-genome sequencing was performed. Whole-genome analysis showed that the gene map of this strain was complete. The Virulence Factor Database annotation results showed that this strain had the key virulence factor genes vvhA and rtxA, which cause host disease. In addition, this strain had genes conferring resistance against cephalosporins, aminoglycosides, tetracyclines, and sulfonamides. Antimicrobial susceptibility testing confirmed the presence of these resistance genes identified in the genome. The results of this study show that V. vulnificus EPL 0201 biotype 2 is a multi-drug resistant strain with high pathogenicity.


Assuntos
Bass , Vibrioses , Vibrio vulnificus , Vibrio , Animais , Antibacterianos/farmacologia , Enguias/genética , Enguias/microbiologia , Humanos , RNA Ribossômico 16S/genética , Vibrio/genética , Vibrioses/microbiologia , Vibrioses/veterinária , Vibrio vulnificus/genética , Fatores de Virulência/genética
2.
World J Microbiol Biotechnol ; 37(6): 106, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34037848

RESUMO

A novel esterase (EstKa) from marine Klebsiella aerogenes was characterized with hydrolytic activity against p-nitrophenyl caprylate (pNPC, C8) under optimum conditions (50 °C and pH 8.5). After two rounds of mutagenesis, two highly potential mutants (I6E9 and L7B11) were obtained with prominent activity, substrate affinity and thermostability. I6E9 (L90Q/P96T) and L7B11 (A37S/Q100L/S133G/R138C/Q156R) were 1.56- and 1.65-fold higher than EstKa in relative catalytic efficiency. The influence of each amino acid on enzyme activity was explored by site-directed mutation. The mutants Pro96Thr and Gln156Arg showed 1.29- and 1.48-fold increase in catalytic efficiency (Kcat/Km) and 54.4 and 36.2% decrease in substrate affinity (Km), respectively. The compound mutant Pro96Thr/Gln156Arg exhibited 68.9% decrease in Km and 1.41-fold increase in Kcat/Km relative to EstKa. Homology model structure analysis revealed that the replacement of Gln by hydrophilic Arg on the esterase surface improved the microenvironment stability and the activity. The replacement of Pro by Thr enabled the esterase enzyme to retain 90% relative activity after 3 h incubation at 45 °C. Structural analysis confirmed that the formation of a hydrogen bond leads to a notable increase of catalytic efficiency under high temperature conditions.


Assuntos
Enterobacter aerogenes/enzimologia , Esterases/genética , Esterases/metabolismo , Mutagênese Sítio-Dirigida/métodos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caprilatos/metabolismo , Catálise , Enterobacter aerogenes/genética , Estabilidade Enzimática , Esterases/química , Hidrólise , Homologia Estrutural de Proteína , Especificidade por Substrato
3.
Microb Cell Fact ; 17(1): 45, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29554914

RESUMO

BACKGROUND: In industries lipolytic reactions occur in insensitive conditions such as high temperature thus novel stout esterases with unique properties are attracts to the industrial application. Protein engineering is the tool to obtain desirable characters of enzymes. A novel esterase gene was isolated from South China Sea and subjected to a random mutagenesis and site directed mutagenesis for higher activity and thermo-stability compared to wild type. RESULTS: A novel esterase showed the highest hydrolytic activity against p-nitrophenyl acetate (pNPA, C2) and the optimal activity at 40 °C and pH 8.5. It was a cold-adapted enzyme and retained approximately 40% of its maximum activity at 0 °C. A mutant, with higher activity and thermo-stability was obtained by random mutagenesis. Kinetic analysis indicated that the mutant Val29Ala/Tyr193Cys shown 43.5% decrease in K m , 2.6-fold increase in K cat , and 4.7-fold increase in K cat /K m relative to the wild type. Single mutants V29A and Y193C were constructed and their kinetic parameters were measured. The results showed that the values of K m , K cat , and K cat /K m of V29A were similar to those of the wild type while Y193C showed 52.7% decrease in K m , 2.7-fold increase in K cat , and 5.6-fold increase in K cat /K m compared with the wild type. The 3-D structure and docking analysis revealed that the replacement of Tyr by Cys could enlarge the binding pocket. Moreover Y193C also showed a better thermo-stability for the reason its higher hydrophobicity and retained 67% relative activity after incubation for 3 h at 50 °C. CONCLUSIONS: The superior quality of modified esterase suggested it has great potential application in extreme conditions and the mutational work recommended that important information for the study of esterase structure and function.


Assuntos
Enterobacter cloacae/química , Esterases/química , Engenharia de Proteínas/métodos , Temperatura Baixa
4.
Appl Microbiol Biotechnol ; 101(9): 3653-3661, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28175947

RESUMO

A glutamine synthetase (GS; 1341 bp) gene with potent L-phosphinothricin (PPT) resistance was isolated and characterized from a marine bacterium Exiguobacterium sp. Molecular docking analysis indicated that the substitution of residues Glu60 and Arg64 may lead to significant changes in binding pocket. To enhance the enzymatic property of GS, variants E60A and R64G were obtained by site-directed mutagenesis. The results revealed a noteworthy change in the thermostability and activity in comparison to the wild type (WT). WT exhibited optimum activity at 35 °C, while E60A and R64G exhibited optimum activity at 45 and 40 °C, respectively. The mutant R64G was 4.3 times more stable at 70 °C in comparison to WT, while E60A was 5.7 times more stable. Kinetic analysis revealed that the k cat value of R64G mutant was 8.10-, 7.25- and 7.63-fold that of WT for ADP, glutamine and hydroxylamine, respectively. The kinetic inhibition (K i, 4.91 ± 0.42 mM) of R64G was 2.02-fold that of WT (2.43 ± 0.14 mM) for L-phosphinothricin. The analysis of structure and function relationship showed that the binding pocket underwent dramatic changes when Arg site of 64 was substituted by Gly, thus promoting the rapid capture of substrates and leading to increase in activity and PPT-resistance of mutant R64G. The rearrangements of the residues at the molecular level formed new hydrogen bonds around the active site, which contributed to the increase of thermostability of enzymes. This study provides new insights into substrate binding mechanism of glutamine synthetase and the improved GS gene also has a potential for application in transgenic crops with L-phosphinothricin tolerance.


Assuntos
Aminobutiratos/metabolismo , Bacillales/enzimologia , Inibidores Enzimáticos/metabolismo , Glutamato-Amônia Ligase/isolamento & purificação , Glutamato-Amônia Ligase/metabolismo , Difosfato de Adenosina/metabolismo , Bacillales/genética , Sítios de Ligação , Estabilidade Enzimática , Glutamato-Amônia Ligase/antagonistas & inibidores , Glutamato-Amônia Ligase/química , Glutamato-Amônia Ligase/genética , Glutamina/metabolismo , Ligação de Hidrogênio , Hidroxilamina/metabolismo , Cinética , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Temperatura
5.
World J Microbiol Biotechnol ; 34(1): 10, 2017 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-29255935

RESUMO

Nitrite is generated from the nitrogen cycle and its accumulation is harmful to environment and it can be reduced to nitric oxid by nitrite reductase. A novel gene from Bacillus firmus GY-49 is identified as a nirK gene encoding Cu-containing nitrite reductase by genome sequence. The full-length protein included a putative signal peptide of 26 amino acids and shown 72.73% similarity with other Cu-containing nitrite reductase whose function was verified. The 993-bp fragment encoding the mature peptide of NirK was cloned into pET-28a (+) vector and overexpressed as an active protein of 36.41 kDa in the E.coli system. The purified enzyme was green in the oxidized state and displayed double gentle peaks at 456 and 608 nm. The specific activity of purified enzyme was 98.4 U/mg toward sodium nitrite around pH 6.5 and 35 °C. The K m and K cat of NirK on sodium nitrite were 0.27 mM and 0.36 × 103 s-1, respectively. Finally, homology model analysis of NirK indicated that the enzyme was a homotrimer structure and well conserved in Cu-binding sites for enzymatic functions. This is a first report for nitrite reductase from Bacillus firmus, which augment the acquaintance of nitrite reductase.


Assuntos
Bacillus firmus/enzimologia , Bacillus firmus/genética , Cobre/química , Genes Bacterianos/genética , Nitrito Redutases/química , Nitrito Redutases/genética , Nitrito Redutases/isolamento & purificação , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Ativação Enzimática , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos , Concentração de Íons de Hidrogênio , Íons , Cinética , Metais , Modelos Moleculares , Nitritos/metabolismo , Oxirredução , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Análise de Sequência de Proteína , Temperatura
6.
BMC Biotechnol ; 16: 9, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26822136

RESUMO

BACKGROUND: Trehalases have potential applications in several fields, including food additives, insecticide development, and transgenic plant. In the present study, we focused on a trehalase from the marine bacterium Zunongwangia sp., which hydrolyzes trehalose to glucose. RESULTS: A novel gene, treZ (1590 bp) encoding an α, α-trehalase of 529 amino acids was cloned from Zunongwangia sp., and TreZ was found to have an optimal activity at 50 °C and pH 6. The activity of TreZ was increased by the presence of NaCl, showing the highest activity (136 %) at 1 M NaCl. A variant C4 with improved catalytic activity was obtained by error-prone PCR and followed by a 96-well plate high-throughput screening. The variant C4 with two altered sites (Y227H, and R442G) displayed a 3.3 fold increase in catalytic efficiency (k cat/K m, 1143.40 mmol(-1) s(-1)) compared with the wild type enzyme (265.91 mmol(-1) s(-1)). In order to explore the contribution of the mutations found in variant C4 to the increased catalytic activity, two mutants Y227H and R442G were constructed by site-directed mutagenesis. The results showed that the catalytic efficiencies of Y227H and R442G were 416.78 mmol(-1) s(-1) and 740.97 mmol(-1) s(-1), respectively, indicating that both mutations contributed to the increased catalytic efficiency of variant C4. The structure modeling and substrate docking revealed that the substitution Y227H enlarged the shape of the binding pocket, to improve the binding of the substrate and the release of the products; while the substitution R442G reduced the size of the side chain and decreased the steric hindrance, which contributed to channel the substrate into the active cavity easier and promote the release of the product. CONCLUSION: In this study, a novel trehalase was cloned, purified, characterized, and engineered. A variant C4 with dramatically improved catalytic activity was obtained by directed evolution, and the mutation sites Y227H and R442G were found to play a significant role in the catalytic efficiency. The overall results provide useful information about the structure and function of trehalase.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Flavobacteriaceae/enzimologia , Mutagênese Sítio-Dirigida/métodos , Trealase/genética , Trealase/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sítios de Ligação/genética , Escherichia coli/genética , Flavobacteriaceae/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Trealase/química
7.
BMC Biotechnol ; 16: 7, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26800680

RESUMO

BACKGROUND: In recent years, cold-active esterases have received increased attention due to their attractive properties for some industrial applications such as high catalytic activity at low temperatures. RESULTS: An esterase-encoding gene (estS, 909 bp) from Serratia sp. was identified, cloned and expressed in Escherichia coli DE3 (BL21). The estS encoded a protein (EstS) of 302 amino acids with a predicted molecular weight of 32.5 kDa. It showed the highest activity at 10 °C and pH 8.5. EstS was cold active and retained ~92 % of its original activity at 0 °C. Thermal inactivation analysis showed that the T1/2 value of EstS was 50 min at 50 °C (residual activity 41.23 %) after 1 h incubation. EstS is also quite stable in high salt conditions and displayed better catalytic activity in the presence of 4 M NaCl. To improve the thermo-stability of EstS, variants of estS gene were created by error-prone PCR. A mutant 1-D5 (A43V, R116W, D147N) that showed higher thermo-stability than its wild type predecessor was selected. 1-D5 showed enhanced T1/2 of 70 min at 50 °C and retained 63.29 % of activity after incubation at 50 °C for 60 min, which were about 22 % higher than the wild type (WT). CD spectrum showed that the secondary structure of WT and 1-D5 are more or less similar, but an increase in ß-sheets was recorded, which enhanced the thermostability of mutant protein. CONCLUSION: EstS was a novel cold-active and salt-tolerant esterase and half-life of mutant 1-D5 was enhanced by 1.4 times compared with WT. The features of EstS are interesting and can be exploited for commercial applications. The results have also provided useful information about the structure and function of Est protein.


Assuntos
Esterases/química , Proteínas Recombinantes/química , Serratia/enzimologia , Sequência de Aminoácidos , Dicroísmo Circular , Temperatura Baixa , Evolução Molecular Direcionada , Estabilidade Enzimática , Escherichia coli/genética , Esterases/genética , Esterases/metabolismo , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tolerância ao Sal/genética , Alinhamento de Sequência , Serratia/genética
8.
Environ Technol ; : 1-11, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37615415

RESUMO

The composting performance and nitrogen transformation during membrane-covered aerobic composting of kitchen waste were investigated. The aerobic composting products of the kitchen waste had a high seed germination index of ∼180%. The application of the membrane increased the mean temperature in the early cooling stage of composting by 4.5℃, resulted in a lower moisture content, and reduced the emissions of NH3 and N2O by 48.5% and 44.1%, respectively, thereby retaining 7.9% more nitrogen in the compost. The adsorption of the condensed water layer under inner-membrane was the reason for reducing NH3 emissions, and finite element modeling revealed that the condensed water layer was present throughout the composting process with a maximum thickness of ∼2 mm in the thermophilic stage. The reduction of N2O emissions was related to the micro-positive pressure in the reactor, which promoted the distribution of oxygen, thus weakening denitrification. In addition, the membrane cover decreased the diversity of the bacterial community and increased the diversity of ammonia-oxidizing strains. This study confirmed that membrane-covered composting was suitable for kitchen waste management and could be used as a strategy to mitigate NH3 and N2O emissions.

9.
Enzyme Microb Technol ; 140: 109644, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32912696

RESUMO

L-theanine, a unique amino acid in green tea with health benefits, can be enzymatically synthesized by γ-glutamyltranspeptidase (γ-GT; EC 2.3.2.2). Here, a salt-tolerant γ-glutamyltranspeptidase from a marine bacterium Bacillus amyloliquefaciens was expressed in Escherichia. coli BL21 (DE3) and was shown to be optimally active at 55 °C, pH 8.5 and alkali stable. A mutant, with higher transpeptidation activity, was obtained following two rounds of directed evolution using error-prone PCR and site-saturation mutagenesis. The mutation increased the ratio of transpeptidation to hydrolysis from 1.6 to 35.6. Additionally, Kinetic analysis exhibited 17.5% decrease of Km, 13.0-fold increase of Kcat, and 16.3-fold increase of Kcat/Km in mutant V319A/S437 G versus the wild-type. The 3-D modelling analysis revealed a tighter binding pocket in mutant V319A/S437 G. The frequency of hydrogen bond between donor substrate and two residues in the catalytic pocket (Gly437 and Thr375) was enhanced, which stabilized the ligand binding and thus improved the catalytic efficiency. The optimal conditions for the biocatalytic synthesis were determined as pH 10.0, 20 µg mL-1BaGT, 200 mM L-glutamine, 2 M ethylamine, and a reaction time of 5 h. The V319A/S437 G mutant was shown to increase the percentage yield of L-theanine from 58% to 83%. These results indicate the great potential of V319A/S437 G in L-theanine production after further study.


Assuntos
Bacillus amyloliquefaciens/enzimologia , Glutamatos/biossíntese , gama-Glutamiltransferase/metabolismo , Bacillus amyloliquefaciens/genética , Biocatálise , Evolução Molecular Direcionada , Escherichia coli/genética , Escherichia coli/metabolismo , Etilaminas/metabolismo , Glutamina/metabolismo , Cinética , Modelos Moleculares , Mutação , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , gama-Glutamiltransferase/química , gama-Glutamiltransferase/genética
10.
Int J Biol Macromol ; 87: 488-97, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26976070

RESUMO

A novel esterase, EstH was cloned, purified and characterized from the marine bacterium Zunongwangia sp. The purified EstH showed optimum activity at 30°C and pH 8.5 with ∼50% of original activity at 0°C. EstH was stable in high salt conditions (0-4.5M NaCl). To improve the characteristics and explore the possibilities for application, a new immobilization matrix, Fe3O4∼cellulose nano-composite, was prepared and was characterized by Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscope (SEM). Interestingly the optimal temperature of immobilized EstH elevated to 35°C. Compared to its free form, immobilized EstH showed better temperature stability (48.5% compared to 22.40% at 50°C after 30min), prolonged half-life (32h compared to 18h), higher storage stability (∼71% activity compared to ∼40% after 50days of storage), improved pH tolerance (∼73% activity at pH 4 and 10), and, more importantly, reusability (∼50% activity after 8 repetitive cycles of usage). Enzyme kinetics showed an increase in the Vmax (from 35.76 to 51.14µM/min) and Kcat (from 365s(-1) to 520s(-1)) after immobilization. The superior catalytic properties of immobilized EstH suggest its great potential in biotechnology and industrial processes.


Assuntos
Biocatálise , Celulose/química , Temperatura Baixa , Esterases/química , Esterases/metabolismo , Nanopartículas de Magnetita/química , Nanocompostos/química , Sequência de Aminoácidos , Clonagem Molecular , Enzimas Imobilizadas/química , Enzimas Imobilizadas/genética , Enzimas Imobilizadas/metabolismo , Esterases/genética , Flavobacteriaceae/enzimologia , Análise de Sequência
11.
Springerplus ; 2: 346, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25538872

RESUMO

The isolation and characterization of a novel halophilic denitrifying marine bacterium is described. The halophilic bacterium, designated as NY-4, was isolated from soil in Yancheng City, China, and identified as Marinobacter hydrocarbonoclasticus by 16S rRNA gene sequence phylogenetic analysis. This organism can grow in NaCl concentrations ranging from 20 to 120 g/L. Optimum growth occurs at 80 g/L NaCl and pH 8.0. The organism can grow on a broad range of carbon sources and demonstrated efficient denitrifying ability (94.2% of nitrate removal and 80.9% of total nitrogen removal in 48 h). During denitrification by NY-4, no NO2 (-)-N was accumulated, N2 was the only gaseous product and no harmful N2O was produced. Because of its rapid denitrification ability, broad carbon use range and ability to grow under high salinity and pH conditions, NY-4 holds promise for the treatment of saline waste waters.

12.
Springerplus ; 2: 335, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24010027

RESUMO

A novel facultative psychrotroph (strain CBS-1), which accumulates poly-ß-hydroxybutyrate (PHB), was isolated from soil samples taken from Changbai Mountain, China. Phylogenetic analysis based on 16S rRNA sequence data and Biolog analysis identified strain CBS-1 as Pseudomonas mandelii. Transmission electron micrographs revealed abundant electron-transparent intracellular granules. (1)H-nuclear magnetic resonance analysis revealed that the granules were composed of PHB. P. mandelii CBS-1 grew optimally at 20°C. When cultured aerobically for 48 h with sucrose as the sole carbon source, strain CBS-1 yielded a maximum cell density of 29.3 g/L cell dry weight and synthesized 22.3 g/L of PHB. The ability of strain CBS-1 to grow at a low temperature and rapidly synthesize high levels of PHB may reduce the costs of industrial PHB production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA