Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Biol Chem ; 300(1): 105517, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042487

RESUMO

Amide-to-ester substitutions are used to study the role of the amide bonds of the protein backbone in protein structure, function, and folding. An amber suppressor tRNA/synthetase pair has been reported for incorporation of p-hydroxy-phenyl-L-lactic acid (HPLA), thereby introducing ester substitution at tyrosine residues. However, the application of this approach was limited due to the low yields of the modified proteins and the high cost of HPLA. Here we report the in vivo generation of HPLA from the significantly cheaper phenyl-L-lactic acid. We also construct an optimized plasmid with the HPLA suppressor tRNA/synthetase pair that provides higher yields of the modified proteins. The combination of the new plasmid and the in-situ generation of HPLA provides a facile and economical approach for introducing tyrosine ester substitutions. We demonstrate the utility of this approach by introducing tyrosine ester substitutions into the K+ channel KcsA and the integral membrane enzyme GlpG. We introduce the tyrosine ester in the selectivity filter of the M96V mutant of the KcsA to probe the role of the second ion binding site in the conformation of the selectivity filter and the process of inactivation. We use tyrosine ester substitutions in GlpG to perturb backbone H-bonds to investigate the contribution of these H-bonds to membrane protein stability. We anticipate that the approach developed in this study will facilitate further investigations using tyrosine ester substitutions.


Assuntos
Ésteres , Fenilpropionatos , Tirosina , Ésteres/química , Ligação de Hidrogênio , Proteínas/química , Sítios de Ligação , RNA de Transferência , Amidas/química , Ácido Láctico , Ligases
2.
J Am Chem Soc ; 146(2): 1543-1553, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38181505

RESUMO

Water inside biological ion channels regulates the key properties of these proteins, such as selectivity, ion conductance, and gating. In this article, we measure the picosecond spectral diffusion of amide I vibrations of an isotope-labeled KcsA potassium channel using two-dimensional infrared (2D IR) spectroscopy. By combining waiting time (100-2000 fs) 2D IR measurements of the KcsA channel including 13C18O isotope-labeled Val76 and Gly77 residues with molecular dynamics simulations, we elucidated the site-specific dynamics of water and K+ ions inside the selectivity filter of KcsA. We observe inhomogeneous 2D line shapes with extremely slow spectral diffusion. Our simulations quantitatively reproduce the experiments and show that water is the only component with any appreciable dynamics, whereas K+ ions and the protein are essentially static on a picosecond timescale. By analyzing simulated and experimental vibrational frequencies, we find that water in the selectivity filter can be oriented to form hydrogen bonds with adjacent or nonadjacent carbonyl groups with the reorientation timescales being three times slower and comparable to that of water molecules in liquid, respectively. Water molecules can reside in the cavity sufficiently far from carbonyls and behave essentially like "free" gas-phase-like water with fast reorientation times. Remarkably, no interconversion between these configurations was observed on a picosecond timescale. These dynamics are in stark contrast with liquid water, which remains highly dynamic even in the presence of ions at high concentrations.

3.
J Am Chem Soc ; 145(33): 18529-18537, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37578394

RESUMO

The potassium ion (K+) configurations of the selectivity filter of the KcsA ion channel protein are investigated with two-dimensional infrared (2D IR) spectroscopy of amide I vibrations. Single 13C-18O isotope labels are used, for the first time, to selectively probe the S1/S2 or S2/S3 binding sites in the selectivity filter. These binding sites have the largest differences in ion occupancy in two competing K+ transport mechanisms: soft-knock and hard-knock. According to the former, water molecules alternate between K+ ions in the selectivity filter while the latter assumes that K+ ions occupy the adjacent sites. Molecular dynamics simulations and computational spectroscopy are employed to interpret experimental 2D IR spectra. We find that in the closed conductive state of the KcsA channel, K+ ions do not occupy adjacent binding sites. The experimental data is consistent with simulated 2D IR spectra of soft-knock ion configurations. In contrast, the simulated spectra for the hard-knock ion configurations do not reproduce the experimental results. 2D IR spectra of the hard-knock mechanism have lower frequencies, homogeneous 2D lineshapes, and multiple peaks. In contrast, ion configurations of the soft-knock model produce 2D IR spectra with a single peak at a higher frequency and inhomogeneous lineshape. We conclude that under equilibrium conditions, in the absence of transmembrane voltage, both water and K+ ions occupy the selectivity filter of the KcsA channel in the closed conductive state. The ion configuration is central to the mechanism of ion transport through potassium channels.


Assuntos
Canais de Potássio , Potássio , Canais de Potássio/química , Potássio/química , Espectrofotometria Infravermelho , Isótopos , Íons/química , Água/metabolismo , Proteínas de Bactérias/química , Conformação Proteica
4.
Small ; 19(52): e2304218, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649201

RESUMO

Superhydrophobic and slippery lubricant-infused surfaces have garnered significant attention for their potential to passively transport low-viscosity liquids like water (1 mPa s). Despite exciting progress, these designs have proven ineffective for transporting high-viscosity liquids such as polydimethylsiloxane (5500 mPa s) due to their inherent limitations imposed by the homogenous surface design, resulting in high viscous drags and compromised capillary forces. Here, a heterogenous water-infused divergent surface (WIDS) is proposed that achieves spontaneous, rapid, and long-distance transport of viscous liquids. WIDS reduces viscous drag by spatially isolating the viscous liquids and surface roughness through its heterogenous, slippery topological design, and generates capillary forces through its heterogenous wetting distributions. The essential role of surface heterogeneity in viscous liquid transport is theoretically and experimentally verified. Remarkably, such a heterogenous paradigm enables transporting liquids with viscosities exceeding 12 500 mPa s, which is two orders of magnitude higher than state-of-the-art techniques. Furthermore, this heterogenous design is generic for various viscous liquids and can be made flexible, making it promising for various systems that require viscous liquid management, such as micropatterning.

5.
bioRxiv ; 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38014355

RESUMO

Water inside biological ion channels regulates the key properties of these proteins such as selectivity, ion conductance, and gating. In this Article we measure the picosecond spectral diffusion of amide I vibrations of an isotope labeled KcsA potassium channel using two-dimensional infrared (2D IR) spectroscopy. By combining waiting time (100 - 2000 fs) 2D IR measurements of the KcsA channel including 13C18O isotope labeled Val76 and Gly77 residues with molecular dynamics simulations, we elucidated the site-specific dynamics of water and K+ ions inside the selectivity filter of KcsA. We observe inhomogeneous 2D lineshapes with extremely slow spectral diffusion. Our simulations quantitatively reproduce the experiments and show that water is the only component with any appreciable dynamics, whereas K+ ions and the protein are essentially static on a picosecond timescale. By analyzing simulated and experimental vibrational frequencies, we find that water in the selectivity filter can be oriented to form hydrogen bonds with adjacent, or non-adjacent carbonyl groups with the reorientation timescales being three times slower and comparable to that of water molecules in liquid, respectively. Water molecules can reside in the cavity sufficiently far from carbonyls and behave essentially like "free" gas-phase-like water with fast reorientation times. Remarkably, no interconversion between these configurations were observed on a picosecond timescale. These dynamics are in stark contrast with liquid water that remains highly dynamic even in the presence of ions at high concentrations.

6.
Nutrients ; 14(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35889766

RESUMO

Thymol is a natural antibacterial agent found in the essential oil extracted from thyme, which has been proven to be beneficial in food and medicine. Meanwhile, the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome and autophagy have been reported to play key roles in the progression of liver injury. However, the effects of thymol on the NLRP3 inflammasome and autophagy in protecting the liver remain unclear. The present study used a mouse model with liver injury induced by lipopolysaccharides (LPS) to investigate the regulatory mechanisms of thymol. We found that thymol alleviated LPS-induced liver structural damage, as judged by reduced inflammatory cell infiltration and improved structure. In addition, elevated levels of the liver damage indicators (alanine transaminase (ALT), aspartate transaminase (AST), and total bilirubin (TBIL)) dropped after thymol administration. The mRNA and protein expression of inflammatory cytokines (tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-22), apoptosis-related genes (caspase3 and caspase9), and the activity of apoptosis-related genes (caspase3 and caspase9) were increased in LPS-treated livers, whereas the changes were alleviated after thymol administration. Thymol inhibited LPS-induced increment in lactate dehydrogenase (LDH) activity in primary hepatocytes of the mouse. In addition, thymol protected mice from liver injury by inhibiting NLRP3 inflammasome activation induced by LPS. Mechanistically, the present study indicates that thymol has liver protective activity resulting from the modulation of the AMP-activated protein kinase-mammalian target of rapamycin (AMPK-mTOR) to regulate the autophagy pathway, hence curbing inflammation.


Assuntos
Hepatite , Timol , Proteínas Quinases Ativadas por AMP , Animais , Apoptose , Autofagia , Hepatite/tratamento farmacológico , Inflamassomos/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Serina-Treonina Quinases TOR , Timol/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
7.
Am J Physiol Heart Circ Physiol ; 301(6): H2235-45, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21926341

RESUMO

The endothelial glycocalyx has been identified as a barrier to transvascular exchange of fluid, macromolecules, and leukocyte-endothelium [endothelial cell (EC)] adhesion during the inflammatory process. Shedding of glycans and structural changes of the glycocalyx have been shown to occur in response to several agonists. To elucidate the effects of glycan shedding on microvascular hemodynamics and capillary resistance to flow, glycan shedding in microvessels in mesentery (rat) was induced by superfusion with 10(-7) M fMLP. Shedding was quantified by reductions of fluorescently labeled lectin (BS-1) bound to the EC and reductions in thickness of the barrier to infiltration of 70-kDa dextran on the EC surface. Red cell velocities (two-slit technique), pressure drops (dual servo-null method), and capillary hematocrit (direct cell counting) were measured in parallel experiments. The results indicate that fMLP caused shedding of glycans in all microvessels with reductions in thickness of the barrier to 70-kDa dextran of 110, 80, and 123 nm, in arterioles, capillaries, and venules, respectively. Intravascular volumetric flows fell proportionately in all three divisions in response to rapid obstruction of venules by white blood cell (WBC)-EC adhesion, and capillary resistance to flow rose 18% due to diminished deformability of activated WBCs. Capillary resistance fell significantly 26% over a 30-min period, as glycans were shed from the EC surface to increase effective capillary diameter, whereas capillary hematocrit and anatomic diameter remained invariant. This decrease in capillary resistance mitigates the increase in resistance due to diminished WBC deformability, and hence these concurrent rheological events may be of equal importance in affecting capillary flow during the inflammatory process.


Assuntos
Arteríolas/metabolismo , Capilares/metabolismo , Endotélio Vascular/metabolismo , Glicocálix/metabolismo , Hemodinâmica , Inflamação/metabolismo , Microcirculação , Vênulas/metabolismo , Animais , Arteríolas/efeitos dos fármacos , Arteríolas/fisiopatologia , Velocidade do Fluxo Sanguíneo , Pressão Sanguínea , Capilares/efeitos dos fármacos , Capilares/fisiopatologia , Permeabilidade Capilar , Adesão Celular , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/fisiopatologia , Hematócrito , Hemodinâmica/efeitos dos fármacos , Inflamação/fisiopatologia , Leucócitos/metabolismo , Microcirculação/efeitos dos fármacos , Microscopia de Fluorescência , Microscopia de Vídeo , N-Formilmetionina Leucil-Fenilalanina/farmacologia , Lectinas de Plantas/metabolismo , Ratos , Ratos Wistar , Fluxo Sanguíneo Regional , Fatores de Tempo , Resistência Vascular , Vênulas/efeitos dos fármacos , Vênulas/fisiopatologia
8.
Microvasc Res ; 80(3): 394-401, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20600162

RESUMO

The endothelial glycocalyx is well endowed with the glycosaminoglycans (GAGs) heparan sulfate, chondroitin sulfate and hyaluronan. The current studies aimed to assess the relative contributions of each of these GAGs to the thickness and permeability of the glycocalyx layer by direct enzymatic removal of each using micropipettes to infuse heparinase, chondroitinase and hyaluronidase into post-capillary venules of the intestinal mesentery of the rat. The relative losses of GAGs due to enzymatic removal were compared with stimulated shedding of glycans induced by superfusing the mesentery with 10(-)(7)M fMLP. Thickness of the glycocalyx was assessed by infiltration of the glycocalyx with circulating FITC labeled 70kDa dextran (Dx70) and measuring the distance from the dye front to the surface of the endothelium (EC), which averaged 463nm under control conditions. Reductions in thickness were 43.3%, 34.1% and 26.1% following heparinase, chondroitinase and hyaluronidase, respectively, and 89.7% with a mixture of all three enzymes. Diffusion coefficients of FITC in the glycocalyx were determined using a 1-D diffusion model. By comparison of measured transients in radial intensity of a bolus of FITC with that of a computational model a diffusion coefficient D was obtained. Values of D were obtained corresponding to the thickness of the layer demarcated by Dx70 (D(Dx70)), and a smaller sublayer 173nm above the EC surface (D(173)), prior to and following enzyme infusion and superfusion with fMLP. The magnitude of D(Dx70) was twice that of D(173) suggesting that the glycocalyx is more compact near the EC surface. Chondroitinase and hyaluronidase significantly increased both D(Dx70) and D(173). However, heparinase decreased D(Dx70), and did not induce any significant change for the D(173). These observations suggest that the three GAGs are not evenly distributed throughout the glycocalyx and that they each contribute to permeability of the glycocalyx to a differing extent. The fMLP-induced shedding caused a reduction in glycocalyx thickness (which may increase permeability) and as with heparinase, decreased the diffusion coefficient of solutes (which may decrease permeability). This behavior suggests that the removal of heparan sulfate may cause a collapse of the glycocalyx which counters decreases in thickness by compacting the layer to maintain a constant resistance to filtration.


Assuntos
Permeabilidade da Membrana Celular , Células Endoteliais/metabolismo , Glicocálix/metabolismo , Glicosaminoglicanos/metabolismo , Mesentério/irrigação sanguínea , Animais , Sulfatos de Condroitina/metabolismo , Condroitinases e Condroitina Liases/administração & dosagem , Simulação por Computador , Dextranos/metabolismo , Difusão , Células Endoteliais/ultraestrutura , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Corantes Fluorescentes/metabolismo , Glicocálix/ultraestrutura , Heparina Liase/administração & dosagem , Heparitina Sulfato/metabolismo , Ácido Hialurônico/metabolismo , Hialuronoglucosaminidase/administração & dosagem , Inflamação/metabolismo , Infusões Intravenosas , Masculino , Modelos Cardiovasculares , N-Formilmetionina Leucil-Fenilalanina/administração & dosagem , Ratos , Ratos Wistar , Vênulas/metabolismo
9.
Biosens Bioelectron ; 168: 112527, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32905927

RESUMO

The early detection of bacteria is of critical importance in addressing serious public health problems. Here, an electrochemical biosensor for rapid detection of bacteria based on facile synthesis of silver wire across electrodes was constructed. High-variable region of 16S rRNA of bacteria was used as biomarker. Polymerase-free synthesis of silver wire was introduced into electrochemical signal transduction to improve the sensitivity of electrochemical detection. The construction biosensor of proposed method is as follows: Metastable hairpin probe H1 was modified on electrode surface, biomarker can open the stem-loop structure of H1 and activates HCR. The alternate opening of the stem-loop structure of H1 and H2-AuNPs finally results in the formation of long double-stranded DNA-RNA (HCR products) -AuNPs. The formed AuNPs modified HCR products was blown in one direction using N2 to across the electrode gap. Using this HCR products as template, the silver wire was formed between the electrodes by silver deposition, and resulted in sharp change in electrical parameters of electrode. As the proof-of-concept work, multichannel series piezoelectric quartz crystal (MSPQC) was utilized as detector. The detection of Staphylococcus aureus in the concentration range from 50 to 107 CFU/mL within 100 min was achieved. The detection limit was 50 CFU/mL. Escherichia coli, Salmonella enteritidis, Listeria innocua, Pseudomonas aeruginosa and Streptococcus pneumoniae did not interfere the detection results. This newly proposed electrochemical biosensor is simple, rapid and exhibit high signal-to-noise ratio, it has great potential for being applied in food safety monitoring and clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Bactérias , Técnicas Eletroquímicas , Eletrodos , Ouro , Limite de Detecção , Listeria , RNA Ribossômico 16S/genética , Prata
10.
Ann Biomed Eng ; 37(9): 1781-95, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19551512

RESUMO

A new method is presented to quantify changes in permeability of the endothelial glycocalyx to small solutes and fluid flow using techniques of indicator dilution. Following infusion of a bolus of fluorescent solutes (either FITC or FITC conjugated Dextran70) into the rat mesenteric circulation, its transient dispersion through post-capillary venules was recorded and analyzed offline. To represent dispersion of solute as a function of radial position in a microvessel, a virtual transit time (VTT) was calculated from the first moment of fluorescence intensity-time curves. Computer simulations and subsequent in vivo measurements showed that the radial gradient of VTT within the glycocalyx layer (Delta VTT/Delta r) may be related to the hydraulic resistance within the layer along the axial direction in a post-capillary venule and the effective diffusion coefficient within the glycocalyx. Modeling the inflammatory process by superfusion of the mesentery with 10(-7) M fMLP, Delta VTT/Delta r was found to decrease significantly from 0.23 +/- 0.08 SD s/microm to 0.18 +/- 0.09 SD s/microm. Computer simulations demonstrated that Delta VTT/Delta r is principally determined by three independent variables: glycocalyx thickness (delta), hydraulic resistivity (K(r)) and effective diffusion coefficient of the solute (D(eff)) within the glycocalyx. Based upon these simulations, the measured 20% decrease in Delta VTT/Delta r at the endothelial cell surface corresponds to a 20% increase in D(eff) over a broad range in K(r), assuming a constant thickness delta. The absolute magnitude of D(eff) required to match Delta VTT/Delta r between in vivo measurements and simulations was found to be on the order of 2.5 x 10(-3) x D(free), where D(free) is the diffusion coefficient of FITC in aqueous media. Thus the present method may provide a useful tool for elucidating structural and molecular alterations in the glycocalyx as occur with ischemia, metabolic and inflammatory events.


Assuntos
Endotélio Vascular/fisiologia , Glicocálix/fisiologia , Modelos Cardiovasculares , Circulação Esplâncnica/fisiologia , Animais , Transporte Biológico/fisiologia , Dextranos/farmacocinética , Dextranos/farmacologia , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/farmacocinética , Fluoresceína-5-Isotiocianato/farmacologia , Masculino , Ratos , Ratos Wistar , Vênulas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA