Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38220574

RESUMO

Parent-child interaction is crucial for children's cognitive and affective development. While bio-synchrony models propose that parenting influences interbrain synchrony during interpersonal interaction, the brain-to-brain mechanisms underlying real-time parent-child interactions remain largely understudied. Using functional near-infrared spectroscopy, we investigated interbrain synchrony in 88 parent-child dyads (Mage children = 8.07, 42.0% girls) during a collaborative task (the Etch-a-Sketch, a joint drawing task). Our findings revealed increased interbrain synchrony in the dorsolateral prefrontal cortex and temporo-parietal areas during interactive, collaborative sessions compared to non-interactive, resting sessions. Linear regression analysis demonstrated that interbrain synchrony in the left temporoparietal junction was associated with enhanced dyadic collaboration, shared positive affect, parental autonomy support, and parental emotional warmth. These associations remained significant after controlling for demographic variables including child age, child gender, and parent gender. Additionally, differences between fathers and mothers were observed. These results highlight the significant association between brain-to-brain synchrony in parent-child dyads, the quality of the parent-child relationship, and supportive parenting behaviors. Interbrain synchrony may serve as a neurobiological marker of real-time parent-child interaction, potentially underscoring the pivotal role of supportive parenting in shaping these interbrain synchrony mechanisms.


Assuntos
Poder Familiar , Espectroscopia de Luz Próxima ao Infravermelho , Feminino , Humanos , Masculino , Poder Familiar/psicologia , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Relações Pais-Filho , Encéfalo/diagnóstico por imagem , Diencéfalo
2.
Proc Natl Acad Sci U S A ; 119(18): e2201922119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35486696

RESUMO

SignificanceThe electroconversion of CO2 to value-added products is a promising path to sustainable fuels and chemicals. However, the microenvironment that is created during CO2 electroreduction near the surface of heterogeneous Cu electrocatalysts remains unknown. Its understanding can lead to the development of ways to improve activity and selectivity toward multicarbon products. This work introduces a method called on-stream substitution of reactant isotope that provides quantitative information of the CO intermediate species present on Cu surfaces during electrolysis. An intermediary CO reservoir that contains more CO molecules than typically expected in a surface adsorbed configuration was identified. Its size was shown to be a factor closely associated with the formation of multicarbon products.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38837359

RESUMO

BACKGROUND: Emotion regulation (ER) is considered central in adolescent psychopathology, and ER strategies may change during challenging times, such as a global pandemic. Despite this, there remains a limited understanding of individual differences in ER mechanisms and their associations with psychopathology. This study examined whether and how cognitive reappraisal, expressive suppression, and self-compassion changed over COVID-19 and how these changes uniquely predicted adolescents' depressive symptoms. METHODS: A total of 2,411 adolescents (58.6% females; Mage = 18.51, SD = 0.80) completed the Emotional Regulation Questionnaire, the Self-compassion Scale, and the Symptom Checklist-90 before COVID-19 (in 2019) and during COVID-19 (in 2020). The predictive associations between each ER strategy and depressive symptoms were tested with latent change score models. RESULTS: Adolescents' use of expressive suppression and self-compassion strategies both increased during COVID-19. More increases in expressive suppression predicted more depressive symptoms, whereas more increases in self-compassion predicted fewer depressive symptoms. Although, on average, cognitive reappraisal did not change, it did show significant variations within the sample - increases (vs. decreases) in cognitive appraisal predicted fewer depressive symptoms. CONCLUSIONS: The study indicates how adolescents' ER strategies changed during the unprecedented global pandemic. It underscores protective roles of increased cognitive reappraisal and self-compassion, as well as the adverse consequence of heightened expressive suppression on adolescents' depressive symptoms. Findings offer insights for targeted interventions aimed at addressing specific ER strategies.

4.
Child Dev ; 95(1): 70-81, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37467355

RESUMO

The present study employed two key dynamic indicators (i.e., inertia and instability) to the psychophysiological research of child emotion regulation (ER) and examined whether respiratory sinus arrhythmia (RSA) dynamics were associated with child ER during a stress task. Eighty-nine Chinese school-age children (Mage = 8.77 years, SD = 1.80 years; 46.1% girls) and their primary caregivers participated in the study. After controlling for RSA static reactivity, multiple regression analyses indicated that lower RSA inertia was related to fewer in-task negative emotions rated by children and their caregivers, and higher RSA instability was associated with better child trait ER. This study introduces physiological indicators of the dynamic aspects of parasympathetic activity to the study of child ER.


Assuntos
Regulação Emocional , Arritmia Sinusal Respiratória , Criança , Feminino , Humanos , Masculino , Arritmia Sinusal Respiratória/fisiologia , Arritmia Sinusal , Análise de Regressão , Emoções/fisiologia
5.
Dev Psychopathol ; : 1-14, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38682545

RESUMO

Challenges with childhood emotion regulation may have origins in infancy and forecast later social and cognitive developmental delays, academic difficulties, and psychopathology. This study tested whether markers of emotion dysregulation in infancy predict emotion dysregulation in toddlerhood, and whether those associations depended on maternal sensitivity. When children (N = 111) were 7 months, baseline respiratory sinus arrhythmia (RSA), RSA withdrawal, and distress were collected during the Still Face Paradigm (SFP). Mothers' reports of infant regulation and orientation and maternal sensitivity were also collected at that time. Mothers' reports of toddlers' dysregulation were collected at 18 months. A set of hierarchical regressions indicated that low baseline RSA and less change in RSA from baseline to stressor predicted greater dysregulation at 18 months, but only for infants who experienced low maternal sensitivity. Baseline RSA and RSA withdrawal were not significantly associated with later dysregulation for infants with highly sensitive mothers. Infants who exhibited low distress during the SFP and who had lower regulatory and orienting abilities at 7 months had higher dysregulation at 18 months regardless of maternal sensitivity. Altogether, these results suggest that risk for dysregulation in toddlerhood has biobehavioral origins in infancy but may be buffered by sensitive caregiving.

6.
Proc Natl Acad Sci U S A ; 118(25)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34131083

RESUMO

Organic-inorganic layered perovskites, or Ruddlesden-Popper perovskites, are two-dimensional quantum wells with layers of lead-halide octahedra stacked between organic ligand barriers. The combination of their dielectric confinement and ionic sublattice results in excitonic excitations with substantial binding energies that are strongly coupled to the surrounding soft, polar lattice. However, the ligand environment in layered perovskites can significantly alter their optical properties due to the complex dynamic disorder of the soft perovskite lattice. Here, we infer dynamic disorder through phonon dephasing lifetimes initiated by resonant impulsive stimulated Raman photoexcitation followed by transient absorption probing for a variety of ligand substitutions. We demonstrate that vibrational relaxation in layered perovskite formed from flexible alkyl-amines as organic barriers is fast and relatively independent of the lattice temperature. Relaxation in layered perovskites spaced by aromatic amines is slower, although still fast relative to bulk inorganic lead bromide lattices, with a rate that is temperature dependent. Using molecular dynamics simulations, we explain the fast rates of relaxation by quantifying the large anharmonic coupling of the optical modes with the ligand layers and rationalize the temperature independence due to their amorphous packing. This work provides a molecular and time-domain depiction of the relaxation of nascent optical excitations and opens opportunities to understand how they couple to the complex layered perovskite lattice, elucidating design principles for optoelectronic devices.

7.
Nano Lett ; 23(24): 11469-11476, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38060980

RESUMO

Energy funneling is a phenomenon that has been exploited in optoelectronic devices based on low-dimensional materials to improve their performance. Here, we introduce a new class of two-dimensional semiconductor, characterized by multiple regions of varying thickness in a single confined nanostructure with homogeneous composition. This "noninteger 2D semiconductor" was prepared via the structural transformation of two-octahedron-layer-thick (n = 2) 2D cesium lead bromide perovskite nanosheets; it consisted of a central n = 2 region surrounded by edge-lying n = 3 regions, as imaged by electron microscopy. Thicker noninteger 2D CsPbBr3 nanostructures were obtained as well. These noninteger 2D perovskites formed a laterally coupled quantum well band alignment with virtually no strain at the interface and no dielectric barrier, across which unprecedented intramaterial funneling of the photoexcitation energy was observed from the thin to the thick regions using time-resolved absorption and photoluminescence spectroscopy.

8.
J Am Chem Soc ; 145(8): 4800-4807, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36795997

RESUMO

Halide perovskite is a unique dynamical system, whose structural and chemical processes happening across different timescales have significant impact on its physical properties and device-level performance. However, due to its intrinsic instability, real-time investigation of the structure dynamics of halide perovskite is challenging, which hinders the systematic understanding of the chemical processes in the synthesis, phase transition, and degradation of halide perovskite. Here, we show that atomically thin carbon materials can stabilize ultrathin halide perovskite nanostructures against otherwise detrimental conditions. Moreover, the protective carbon shells enable atomic-level visualization of the vibrational, rotational, and translational movement of halide perovskite unit cells. Albeit atomically thin, protected halide perovskite nanostructures can maintain their structural integrity up to an electron dose rate of 10,000 e-/Å2·s while exhibiting unusual dynamical behaviors pertaining to the lattice anharmonicity and nanoscale confinement. Our work demonstrates an effective method to protect beam-sensitive materials during in situ observation, unlocking new solutions to study new modes of structure dynamics of nanomaterials.

9.
Virol J ; 20(1): 121, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37312151

RESUMO

Xenotransplantation is considered a solution for the shortage of organs, and pigs play an indispensable role as donors in xenotransplantation. The biosecurity of pigs, especially the zoonotic viruses carried by pigs, has attracted attention. This review introduces several viruses, including porcine endogenous retroviruses that are integrated into the pig genome in a DNA form, herpesviruses that have been proven to clearly affect recipient survival time in previous xenotransplant surgeries, the zoonotic hepatitis E virus, and the widely distributed porcine circoviruses. The detail virus information, such as structure, caused diseases, transmission pathways, and epidemiology was introduced in the current review. Diagnostic and control measures for these viruses, including detection sites and methods, vaccines, RNA interference, antiviral pigs, farm biosecurity, and drugs, are discussed. The challenges faced, including those posed by other viruses and newly emerged viruses, and the challenges brought by the modes of transmission of the viruses are also summarized.


Assuntos
Circovirus , Vírus da Hepatite E , Animais , Suínos , Transplante Heterólogo/efeitos adversos , Antivirais , Fazendas
10.
Nano Lett ; 22(6): 2437-2443, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35254081

RESUMO

Cesium lead iodide (CsPbI3) is a promising semiconductor with a suitable band gap for optoelectronic devices. CsPbI3 has a metastable perovskite phase that undergoes a phase transition into an unfavorable nonperovskite phase in an ambient environment. This phase transition changes the optoelectronic properties of CsPbI3 and hinders its potential for device applications. Therefore, it is of central importance to understand the kinetics of such instability and develop strategies to control and stabilize the perovskite phase. Here, we use ultralong CsPbI3 nanowires as a model platform to investigate the phase transition kinetics. Our results depict the role of environmental stressors (moisture and temperature) in controlling the phase transition dynamics of CsPbI3, which can serve as guiding principles for future phase transition studies and the design of related photovoltaics. Furthermore, we demonstrate the controllability of phase propagation on individual nanowires by varying the moisture level and temperature.


Assuntos
Nanofios , Césio , Iodetos , Semicondutores
11.
Biochemistry ; 61(24): 2870-2878, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36130198

RESUMO

Bile acids are essential metabolites and signaling molecules in mammals. Primary bile acids are synthesized from cholesterol in the liver. At the same time, the microbiota in the mammalian gut has many interactions with bile acid, including various biotransformation processes such as 7-dehydroxylation and 3-epimerization. 7-Dehydroxylation is mediated by a bile acid-inducible (bai) operon, while 7-dehydroxylation and 3-epimerization are independently observed in only a few strains. Herein, we describe a novel microbe, Dorea sp. AM58-8, that can accomplish a two-step transformation and turn primary bile acids into both 3α secondary bile acids like deoxycholic acid and lithocholic acid, and 3ß secondary bile acids like isodeoxycholic acid and isolithocholic acid. We subsequently characterized BaiA, BaiB, BaiE, and their substrate profiles biochemically. The potential bai gene clusters in the metagenomes were further mined. Their evolution, potential functions, and possible regulatory pathways were predicted using bioinformatics based on our understanding of the 7-dehydroxylation pathway in Dorea sp. AM58-8. This study of Dorea sp. AM58-8 also helps us distinguish the inactive bacteria that seem to have the 7-dehydroxylation pathway proteins and discover the 7-dehydroxylation pathway in other mammalian gut microbes.


Assuntos
Bactérias , Ácidos e Sais Biliares , Animais , Óperon , Mamíferos
12.
J Am Chem Soc ; 144(27): 12450-12458, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35771005

RESUMO

The structural diversity and tunable optoelectronic properties of halide perovskites originate from the rich chemistry of the metal halide ionic octahedron [MX6]n- (M = Pb2+, Sb3+, Te4+, Sn4+, Pt4+, etc.; X = Cl-, Br-, and I-). The properties of the extended perovskite solids are dictated by the assembly, connectivity, and interaction of these octahedra within the lattice environment. Hence, the ability to manipulate and control the assembly of the octahedral building blocks is paramount for constructing new perovskite materials. Here, we propose a systematic supramolecular strategy for the assembly of [MX6]n- octahedra into a solid extended network. Interaction of alkali metal-bound crown ethers with the [M(IV)X6]2- octahedron resulted in a structurally and optoelectronically tunable "dumbbell" structural unit in solution. Single crystals with diverse packing geometries and symmetries will form as the solid assembly of this new supramolecular building block. This supramolecular assembly route introduces a new general strategy for designing halide perovskite structures with potentially new optoelectronic properties.

13.
Cancer Sci ; 113(12): 4363-4373, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36056603

RESUMO

Computed tomography (CT), an efficient radiological technology, is used to detect lung cancer in the clinic. Carcinoembryonic antigen (CEA), a common tumor biomarker, is applied in the detection of various tumors. To highlight the advantages of two-dimensional techniques and assist clinicians in optimizing lung cancer diagnostic schemes, we established a favorable model combining CT and CEA. In the study, univariate analysis was performed to screen independent predictors in a training cohort of 271 patients with malignant pulmonary nodules (MPNs) and 92 with benign pulmonary nodules (BPNs). Six machine learning-based models involving five CT predictors (mediastinal lymph node enlargement, lobulation, vascular notch sign, spiculation, and nodule number) and lnCEA were constructed and validated in an independent cohort of 129 participants (92 MPNs and 37 BPNs) by SPSS Modeler. A nomogram and the Delong test were generated by R software. Finally, the model established by logistic regression had highest diagnostic efficiency (area under the curve [AUC] = 0.912). Moreover, the diagnostic ability of the logistic model in the validation cohort (AUC = 0.882, 80.4% sensitivity, 75.7% specificity) was higher than that of the Peking University model (AUC = 0.712, 68.5% sensitivity, 70.3% specificity) and the Mayo model (AUC = 0.745, 62.0% sensitivity, 75.7% specificity). Interestingly, for the participants with intermediate (10-30 mm) and CEA-negative nodule, the model reached an AUC of 0.835 (72.3% sensitivity, 83.3% specificity). The AUC for the early lung cancer was as high as 0.822 with 67.3% sensitivity and 78.9% specificity. As a conclusion, this promising model presents a new diagnostic strategy for the clinic to distinguish MPNs from BPNs.


Assuntos
Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Humanos , Antígeno Carcinoembrionário , Nódulos Pulmonares Múltiplos/diagnóstico por imagem , Nódulos Pulmonares Múltiplos/patologia , Tomografia Computadorizada por Raios X/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Aprendizado de Máquina , Estudos Retrospectivos
14.
Child Dev ; 93(1): 269-287, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473345

RESUMO

This study tested two competing models of differential susceptibility and diathesis-stress in a prospective longitudinal study of African American youths (N = 935). It examined whether individual variations in the functioning of the hypothalamic-pituitary-adrenocortical axis at age 11 interact with middle childhood parent-child relationship quality to predict mental and physical health problems in adolescence (ages 11-15 years old). Adolescent boys with lower levels of cortisol reactivity to laboratory challenges had the highest levels of internalizing problems if they experienced a high conflictual relationship with their parents. Equally low-reactive boys, however, reported the lowest number of physical illnesses if their relationship with their parents was characterized by high levels of intimacy and support.


Assuntos
Saúde do Adolescente , Negro ou Afro-Americano , Adolescente , Criança , Suscetibilidade a Doenças , Humanos , Hidrocortisona , Estudos Longitudinais , Masculino , Relações Pais-Filho , Estudos Prospectivos , Estresse Psicológico
15.
Child Dev ; 93(4): 1090-1105, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35404480

RESUMO

This study tested whether newborn attention and arousal provide a foundation for the dynamics of respiratory sinus arrhythmia (RSA) in mother-infant dyads. Participants were 106 mothers (Mage  = 29.54) and their 7-month-old infants (55 males and 58 White and non-Hispanic). Newborn attention and arousal were measured shortly after birth using the NICU Network Neurobehavioral Scale. Higher newborn arousal predicted a slower return of infant RSA to baseline. Additionally, greater newborn attention predicted mothers' slower return to baseline RSA following the still-face paradigm, and this effect only held for mothers whose infants had lower newborn arousal. These findings suggest that newborn neurobehavior, measured within days of birth, may contribute to later mother-infant physiological processes while recovering from stress.


Assuntos
Mães , Arritmia Sinusal Respiratória , Adulto , Nível de Alerta/fisiologia , Arritmia Sinusal , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Relações Mãe-Filho , Arritmia Sinusal Respiratória/fisiologia
16.
Proc Natl Acad Sci U S A ; 116(26): 12648-12653, 2019 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-31189607

RESUMO

Ion exchange, as a postsynthetic transformation strategy, offers more flexibilities in controlling material compositions and structures beyond direct synthetic methodology. Observation of such transformation kinetics on the single-particle level with rich spatial and spectroscopic information has never been achieved. We report the quantitative imaging of anion exchange kinetics in individual single-crystalline halide perovskite nanoplates using confocal photoluminescence microscopy. We have systematically observed a symmetrical anion exchange pathway on the nanoplates with dependence on reaction time and plate thickness, which is governed by the crystal structure and the diffusion-limited transformation mechanism. Based on a reaction-diffusion model, the halide diffusion coefficient was estimated to be on the order of [Formula: see text] This diffusion-controlled mechanism leads to the formation of 2D perovskite heterostructures with spatially resolved coherent interface through the precisely controlled anion exchange reaction, offering a design protocol for tailoring functionalities of semiconductors at the nano-/microscale.


Assuntos
Halogênios/química , Nanoestruturas/química , Semicondutores , Energia Solar , Benzofuranos/química , Cinética , Luz , Luminescência , Nanoestruturas/efeitos da radiação , Imagem Individual de Molécula
17.
Ecotoxicol Environ Saf ; 231: 113173, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35007830

RESUMO

A growing body of evidence associated particulate matter (PM) exposure with lipid metabolism disorders, yet, the underlying mechanism remains to be elucidated. Among the major lipid metabolism modulators, peroxisome proliferator-activated receptor (PPAR) alpha plays an important role. In the current study, an individually ventilated cage (IVC) system was used to expose C57/B6 mice to real-ambient PM for six weeks, with or without co-treatment of PPAR alpha agonist WY14,643. The general parameters, liver and adipose tissue pathology, serum lipids, metal deposition and lipid profile of liver were assessed. The results indicated that six weeks of real-ambient PM exposure induced dyslipidemia, including increased serum triglycerides (TG) and decreased high density lipoprotein cholesterol (HDL-C) level, along with steatosis in liver, increased size of adipocytes in white adipose tissue (WAT) and whitening of brown adipose tissue (BAT). ICP-MS results indicated increased Cr and As deposition in liver. Lipidomics analysis revealed that glycerophospholipids and cytochrome P450 pathway were most significantly affected by PM exposure. Several lipid metabolism-related genes, including CYP4A14 in liver and UCP1 in BAT were downregulated following PM exposure. WY14,643 treatment alleviated PM-induced dyslipidemia, liver steatosis and whitening of BAT, while enhancing CD36, SLC27A1, CYP4A14 and UCP1 expression. In conclusion, PPAR alpha pathway participates in PM-induced lipid metabolism disorder, PPAR alpha agonist WY14,643 treatment exerted protective effects on PM-induced dyslipidemia, liver steatosis and whitening of BAT, but not on increased adipocyte size of WAT.


Assuntos
Transtornos do Metabolismo dos Lipídeos , PPAR alfa , Tecido Adiposo Marrom/metabolismo , Animais , Metabolismo dos Lipídeos , Transtornos do Metabolismo dos Lipídeos/metabolismo , Camundongos , PPAR alfa/genética , PPAR alfa/metabolismo , Material Particulado/metabolismo , Proliferadores de Peroxissomos/metabolismo , Proliferadores de Peroxissomos/farmacologia
18.
Nano Lett ; 21(15): 6684-6689, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34283612

RESUMO

Phase-separation is commonly observed in multimetallic nanomaterials, yet it is not well understood how immiscible elements distribute in a thermodynamically stable nanoparticle. Herein, we studied the phase-separation of Au and Rh in nanoparticles using electron microscopy and tomography techniques. The nanoparticles were thermally annealed to form thermodynamically stable structures. HAADF-STEM and EDS characterizations reveal that Au and Rh segregate into two domains while their miscibility is increased. Using aberration-corrected HAADF-STEM and atomic electron tomography, we show that the increased solubility of Au in Rh is achieved by forming Au clusters and single atoms inside the Rh domains and on the Rh surface. Furthermore, based on the three-dimensional reconstruction of a AuRh nanoparticle, we can visualize the uneven interface that is embedded in the nanoparticle. The results advance our understanding on the nanoscale thermodynamic behavior of metal mixtures, which is crucial for the optimization of multimetallic nanostructures for many applications.


Assuntos
Nanopartículas , Nanoestruturas , Microscopia Eletrônica , Solubilidade , Termodinâmica
19.
Nano Lett ; 21(20): 8856-8862, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34612654

RESUMO

Traditional covalent semiconductors require complex processing methods for device fabrication due to their high cohesive energies. Here, we develop a stable, ligand-free perovskite semiconductor ink that can be used to make patterned semiconductor-based optoelectronics in one step. The perovskite ink is formed via the dissolution of crystals of vacancy-ordered double perovskite Cs2TeX6 (X = Cl-, Br-, I-) in polar aprotic solvents, leading to the stabilization of isolated [TeX6]2- octahedral anions and free Cs+ cations without the presence of ligands. The stabilization of the fundamental perovskite ionic octahedral building blocks in solution creates multifunctional inks with the ability to reversibly transform between the liquid ink and the solid-state perovskite crystalline system in air within minutes. These easily processable inks can be patterned onto various materials via dropcasting, spraying or painting, and stamping, highlighting the crucial role of solvated octahedral complexes toward the rapid formation of phase-pure perovskite structures in ambient conditions.

20.
Nano Lett ; 21(12): 5415-5421, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34120442

RESUMO

The metal halide ionic octahedron, [MX6] (M = metal cation, X = halide anion), is considered to be the fundamental building block and functional unit of metal halide perovskites. By representing the metal halide ionic octahedron in halide perovskites as a super ion/atom, the halide perovskite can be described as an extended ionic octahedron network (ION) charge balanced by selected cations. This new perspective of halide perovskites based on ION enables the prediction of different packing and connectivity of the metal halide octahedra based on different solid-state lattices. In this work, a new halide perovskite Cs8Au3.5In1.5Cl23 was discovered on the basis of a BaTiO3-lattice ION {[InCl6][AuCl5][Au/InCl4]3}8-, which is assembled from three different ionic octahedra [InCl6], [AuCl6], and [Au/InCl6] and balanced by positively charged Cs cations. The success of this ION design concept in the discovery of Cs8Au3.5In1.5Cl23 opens up a new venue for the rational design of new halide perovskite materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA