Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Wei Sheng Yan Jiu ; 53(5): 726-733, 2024 Sep.
Artigo em Zh | MEDLINE | ID: mdl-39308103

RESUMO

OBJECTIVE: To investigate the distribution and exposure levels of pesticides in raw water and drinking water in China, as well as to assess the potential health risks associated with long-term consumption. METHODS: A total of 83 typical water plants were selected in key river basins in China to collected samples of the raw water, finished water, and tap water. The online-solid phase extraction coupled with liquid chromatography-tandem mass spectrometry method was used to determine 13 pesticides, including acetochlor, atrazine, dimethoate, malathion, carbofuran, dichlorvos, chlorpyrifos, parathion, trifluralin, isoprothiolane, simetryn, methyl parathion, and metalaxyl, as well as 6 environmental metabolites, including carbendazim, malaoxon, 3-hydroxycarbofuran, deethyl atrazine, deisopropyl atrazine and hydroxy atrazine. The carcinogenic and non-carcinogenic risks of these pesticides were assessed. RESULTS: The concentrations of total amount of pesticides in the samples ranged from 0.1 ng/L to 1299.4 ng/L, with a median value of 64.7 ng/L. The detection rates of 5 pesticides or their metabolites exceeds 80%, namely acetochlor, atrazine, hydroxyl atrazine, deethyl atrazine, and metalaxyl. More than 6 pesticides or their metabolites were detected in 77.7% of the total 498 samples. The total concentration of pesticides during the wet season ranged from 1.1 ng/L to 1299.4 ng/L, with a median of 69.2 ng/L and a median average daily dose of 2.3 ng/(kg·d). The total concentration of pesticides in the dry season samples ranged from 0.1 ng/L to 543.5 ng/L, with a median of 60.2 ng/L and a median average daily dose of 2.0 ng/(kg·d). Among the 498 samples, the maximum carcinogenic risk of dichlorvos was 2.0×10~(-7), and the maximum carcinogenic risk of trifluralin was 1.1×10~(-10). The non-carcinogenic HI of 19 pesticides and metabolites pesticides was ≤6.0×10~(-3). Among them, the maximum HI of the middle route of the South to North Water Diversion Project, the lower reaches of the Yellow River, the eastern route of the South to North Water Diversion Project, the Liaohe River, and the Songhua River basin was 2.0×10~(-3)-6.0×10~(-3), while the HI of other basins was less than 1.0×10~(-3). CONCLUSION: Different concentrations of pesticides have been detected in raw water, finished water, and tap water of key river basins in China, with the highest total concentration of detected reaching 1299.4 ng/L. The carcinogenic risk was lower than 10~(-6) and the non-carcinogenic hazard index of 19 pesticides was less than 1, and both below the acceptable level. Because of the universality and diverse occurrence of these pesticides in drinking water, long-term exposure to pesticides is still a concern.


Assuntos
Água Potável , Praguicidas , Rios , Poluentes Químicos da Água , China , Medição de Risco , Poluentes Químicos da Água/análise , Água Potável/química , Água Potável/análise , Rios/química , Praguicidas/análise , Humanos , Monitoramento Ambiental/métodos , Atrazina/análise , Espectrometria de Massas em Tandem , Exposição Ambiental/análise , Exposição Ambiental/efeitos adversos , Toluidinas
2.
Bioorg Med Chem ; 96: 117531, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37972434

RESUMO

The main protease (Mpro) represents one of the most effective and attractive targets for designing anti-SARS-CoV-2 drugs. In this study, we designed and synthesized a novel series of Ebselen derivatives by incorporating privileged fragments from different pockets of the Mpro active site. Among these compounds, 11 compounds showed submicromolar activity in the FRET-based SARS-CoV-2 Mpro inhibition assay, with IC50 values ranging from 233 nM to 550 nM. Notably, compound 3a displayed submicromolar Mpro activity (IC50 = 364 nM) and low micromolar antiviral activity (EC50 = 8.01 µM), comparable to that of Ebselen (IC50 = 339 nM, EC50 = 3.78 µM). Time-dependent inhibition assay confirmed that these compounds acted as covalent inhibitors. Taken together, our optimization campaigns thoroughly explored the structural diversity of Ebselen and verified the impact of specific modifications on potency against Mpro.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Azóis/farmacologia , Relação Estrutura-Atividade , Inibidores de Proteases/farmacologia , Antivirais/farmacologia , Simulação de Acoplamento Molecular
3.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902361

RESUMO

Filamentation temperature-sensitive H (FtsH) is a proteolytic enzyme that plays an important role in plant photomorphogenesis and stress resistance. However, information regarding the FtsH family genes in pepper is limited. In our research, through genome-wide identification, 18 members of the pepper FtsH family (including five FtsHi members) were identified and renamed based on phylogenetic analysis. CaFtsH1 and CaFtsH8 were found to be essential for pepper chloroplast development and photosynthesis because FtsH5 and FtsH2 were lost in Solanaceae diploids. We found that the CaFtsH1 and CaFtsH8 proteins were located in the chloroplasts and specifically expressed in pepper green tissues. Meanwhile, CaFtsH1 and CaFtsH8-silenced plants created by virus-induced gene silencing exhibited albino leaf phenotypes. In addition, CaFtsH1-silenced plants were observed to contain very few dysplastic chloroplasts and lost the capacity for photoautotrophic growth. Transcriptome analysis revealed that the expression of chloroplast-related genes such as those coding the photosynthesis-antenna protein and structural proteins was downregulated in CaFtsH1-silenced plants, resulting in the inability to form normal chloroplasts. This study improves our understanding of pepper chloroplast formation and photosynthesis through the identification and functional study of CaFtsH genes.


Assuntos
Cloroplastos , Fotossíntese , Filogenia , Cloroplastos/metabolismo , Peptídeo Hidrolases/metabolismo , Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas
4.
Int J Mol Sci ; 24(24)2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38139237

RESUMO

Sugars will eventually be exported transporters (SWEETs) are a novel class of sugar transport proteins that play a crucial role in plant growth, development, and response to stress. However, there is a lack of systematic research on SWEETs in Capsicum annuum L. In this study, 33 CaSWEET genes were identified through bioinformatics analysis. The Ka/Ks analysis indicated that SWEET genes are highly conserved not only among peppers but also among Solanaceae species and have experienced strong purifying selection during evolution. The Cis-elements analysis showed that the light-responsive element, abscisic-acid-responsive element, jasmonic-acid-responsive element, and anaerobic-induction-responsive element are widely distributed in the promoter regions of CaSWEETs. The expression pattern analysis revealed that CaSWEETs exhibit tissue specificity and are widely involved in pepper growth, development, and stress responses. The post-transcription regulation analysis revealed that 20 pepper miRNAs target and regulate 16 CaSWEETs through cleavage and translation inhibition mechanisms. The pathogen inoculation assay showed that CaSWEET16 and CaSWEET22 function as susceptibility genes, as the overexpression of these genes promotes the colonization of pathogens, whereas CaSWEET31 functions as a resistance gene. In conclusion, through systematic identification and characteristic analysis, a comprehensive understanding of CaSWEET was obtained, which lays the foundation for further studies on the biological functions of SWEET genes.


Assuntos
Capsicum , Capsicum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Genes de Plantas , Família Multigênica , Regulação da Expressão Gênica de Plantas , Filogenia
5.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674730

RESUMO

This study presents proof of concept for designing a novel HIV-1 covalent inhibitor targeting the highly conserved Tyr318 in the HIV-1 non-nucleoside reverse transcriptase inhibitors binding pocket to improve the drug resistance profiles. The target inhibitor ZA-2 with a fluorosulfate warhead in the structure was found to be a potent inhibitor (EC50 = 11-246 nM) against HIV-1 IIIB and a panel of NNRTIs-resistant strains, being far superior to those of NVP and EFV. Moreover, ZA-2 was demonstrated with lower cytotoxicity (CC50 = 125 µM). In the reverse transcriptase inhibitory assay, ZA-2 exhibited an IC50 value of 0.057 µM with the ELISA method, and the MALDI-TOF MS data demonstrated the covalent binding mode of ZA-2 with the enzyme. Additionally, the molecular simulations have also demonstrated that compounds can form covalent binding to the Tyr318.


Assuntos
Fármacos Anti-HIV , HIV-1 , Inibidores da Transcriptase Reversa/farmacologia , Inibidores da Transcriptase Reversa/química , HIV-1/metabolismo , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/química , Transcriptase Reversa do HIV/metabolismo , Desenho de Fármacos , Relação Estrutura-Atividade
6.
Bioorg Med Chem ; 53: 116531, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890994

RESUMO

To explore the chemical space around the entrance channel of the HIV-1 reverse transcriptase (RT) binding pocket, we innovatively designed and synthesized a series of novel indolylarylsulfones (IASs) bearing phenylboronic acid and phenylboronate ester functionalities at the indole-2-carboxamide as new HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) through structure-based drug design. All the newly synthesized compounds exhibited excellent to moderate potency against wild-type (WT) HIV-1 with EC50 values ranging from 6.7 to 42.6 nM. Among all, (3-ethylphenyl)boronic acid substituted indole-2-carboxamide and (4-ethylphenyl) boronate ester substituted indole-2-carboxamide were found to be the most potent inhibitors (EC50 = 8.5 nM, SI = 3310; EC50 = 6.7 nM, SI = 3549, respectively). Notably, (3-ethylphenyl)boronic acid substituted indole-2-carboxamide maintained excellent activities against the single HIV-1 mutants L100I (EC50 = 7.3 nM), K103N (EC50 = 9.2 nM), as well as the double mutant V106A/F227L (EC50 = 21.1 nM). Preliminary SARs and molecular modelling studies are also discussed in detail.


Assuntos
Fármacos Anti-HIV/farmacologia , Ácidos Borônicos/farmacologia , Ésteres/farmacologia , Indóis/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Sulfonas/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Ácidos Borônicos/química , Relação Dose-Resposta a Droga , Ésteres/química , Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Indóis/química , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/química , Solubilidade , Relação Estrutura-Atividade , Sulfonas/química , Água/química
7.
Molecules ; 28(1)2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36615354

RESUMO

The Coronavirus Disease 2019 (COVID-19) and dengue fever (DF) pandemics both remain to be significant public health concerns in the foreseeable future. Anti-SARS-CoV-2 drugs and vaccines are both indispensable to eliminate the epidemic situation. Here, two piperazine-based polyphenol derivatives DF-47 and DF-51 were identified as potential inhibitors directly blocking the active site of SARS-CoV-2 and DENV RdRp. Data through RdRp inhibition screening of an in-house library and in vitro antiviral study selected DF-47 and DF-51 as effective inhibitors of SARS-CoV-2/DENV polymerase. Moreover, in silico simulation revealed stable binding modes between the DF-47/DF-51 and SARS-CoV-2/DENV RdRp, respectively, including chelating with Mg2+ near polymerase active site. This work discovered the inhibitory effect of two polyphenols on distinct viral RdRp, which are expected to be developed into broad-spectrum, non-nucleoside RdRp inhibitors with new scaffold.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Polifenóis/farmacologia , RNA Polimerase Dependente de RNA/metabolismo , Antivirais/química , Simulação de Acoplamento Molecular
8.
Plant J ; 103(1): 323-337, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32129912

RESUMO

Cuticular waxes play a crucial role not only in plant defense against biotic and abiotic stresses, but also in the quality and storability of fruits, such as the tomato (Solanum lycopersicum). Although the biosynthetic pathways of waxes have been extensively characterized, the regulatory mechanisms underlying wax biosynthesis in tomato remain largely unclear. Here, we show that Woolly (Wo), a multicellular trichome regulator, is involved in modulating wax biosynthesis in tomato. Wo enhances the expression of the wax biosynthetic genes SlCER6, SlKCR1, and SlPAS2, and the wax transporter gene SlLTP, and thereby promotes wax accumulation. Furthermore, Wo directly binds to the L1-box in the promoter of SlCER6, an essential element of the very-long-chain fatty acid elongase complex. Intriguingly, overexpression (OE) or knock-down of SlMYB31, an MYB transcription factor that physically interacts with Wo in vivo and in vitro, produces marked changes in wax composition, and whereas Wo knock-down inhibits wax accumulation in SlMYB31-OE lines, SlMYB31 knock-down inhibits wax accumulation in Wo-OE lines, implying that these two genes function in the same pathway. Lastly, SlCER6 expression is induced by abscisic acid in a manner that is partially dependent on Wo. These results demonstrate that Wo and SlMYB31 cooperatively control tomato cuticular wax biosynthesis by regulating the expression of SlCER6.


Assuntos
Frutas/metabolismo , Epiderme Vegetal/metabolismo , Proteínas de Plantas/fisiologia , Solanum lycopersicum/metabolismo , Fatores de Transcrição/fisiologia , Ceras/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo
9.
Bioorg Med Chem ; 42: 116239, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34090079

RESUMO

To further explore the chemical space surrounding the "hydrophobic channel" of the NNRTI binding pocket (NNIBP), a new series of diarylpyrimidines (DAPYs) were designed and synthesized as potent HIV-1 non-nucleoside RT inhibitors (NNRTIs). The target compounds were evaluated for anti-HIV potency in MT-4 cells. Most of the synthesized DAPYs exhibited moderate to excellent activity against the HIV-1 wild-type (WT) strain with EC50 values ranging from 16 nM to 0.722 µM. Interestingly, few compounds displayed remarkable activity in inhibiting K103N mutant virus with EC50 values ranging from 39 nM to 1.708 µM. Notably, FS2 (EC50(IIIB) = 16 nM, EC50(K103N) = 39 nM, SI = 294) was identified as the most significant compound, which was considerably more potent than nevirapine, lamivudine, and comparable to zidovudine. Additionally, the HIV-1 RT inhibition assay confirmed their binding target. Preliminary structure-activity relationships (SARs) and molecular modeling studies were also performed, providing significant suggestions for further optimization.


Assuntos
Fármacos Anti-HIV/farmacologia , Descoberta de Drogas , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Inibidores da Transcriptase Reversa/farmacologia , Fármacos Anti-HIV/química , Relação Dose-Resposta a Droga , Transcriptase Reversa do HIV/metabolismo , HIV-1/genética , Humanos , Interações Hidrofóbicas e Hidrofílicas , Testes de Sensibilidade Microbiana , Estrutura Molecular , Mutação , Inibidores da Transcriptase Reversa/química , Relação Estrutura-Atividade
10.
Bioorg Chem ; 116: 105353, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34536931

RESUMO

Herein, alkenylpiperidine and alkynylpiperidine moieties were introduced into the left wing of DAPYs (diarylpyrimidines) to explore the new site of the NNIBP (non-nucleoside inhibitor binding pocket) protein-solvent interface region via the structure-based drug design strategy. All the synthesized compounds displayed nanomolar to submicromolar activity against WT (wild-type) HIV-1. Among all, compound FT1 (EC50 = 19 nM) was found to be the most active molecule, which is better than NVP (EC50 = 0.10 µM). In addition, most of the compounds displayed micromolar activity against K103N and E138K mutant strains, while FT1 (EC50(K103N) = 50 nM, EC50(E138K) = 0.19 µM) still has the most effective activity. The molecular dynamics simulation studies revealed that the presence of pyridine moiety of FT1 was essential and played a significant role in its binding with RT (reverse transcriptase).


Assuntos
Fármacos Anti-HIV/farmacologia , Desenho de Fármacos , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Piperidinas/farmacologia , Pirimidinas/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Relação Dose-Resposta a Droga , Transcriptase Reversa do HIV/metabolismo , HIV-1/enzimologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Piperidinas/química , Pirimidinas/síntese química , Pirimidinas/química , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA