Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Anal Chem ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324019

RESUMO

Cascade molecular events in complex systems are of vital importance for enhancing molecular diagnosis and information processing. However, the conversion of a cascaded biosensing system into a multilayer encrypted molecular keypad lock remains a significant challenge in the development of molecular logic devices. In this study, we present a photocleavable DNA nanotube-based dual-amplified resonance Rayleigh scattering (RRS) system for detecting microRNA-126 (miR-126). The cascading dual-amplification biosensing system provides a multilayer-encrypted prototype with the functionality of a molecular computing cascade keypad lock. RRS signals were greatly amplified by using photocleavable DNA nanotubes and enzyme-assisted strand displacement amplification (SDA). In the presence of miR-126, enzyme-assisted SDA produced numerous identical nucleotide fragments as the target, which were then specifically attached to magnetic beads through the DNA nanotube by using a Y-shaped DNA scaffold. Upon ultraviolet irradiation, the DNA nanotube was released into the solution, resulting in an increase in the intensity of the RRS signal. This strategy demonstrated a low limit of detection (0.16 fM) and a wide dynamic range (1 fM to 1 nM) for miR-126. Impressively, the enzyme-assisted SDA offers a molecular computing model for generating the target pool, which serves as the input element for unlocking the system. By cascading the molecular computing process, we successfully constructed a molecular keypad lock with a multilevel authentication technique. The proposed system holds great potential for applications in molecular diagnosis and information security, indicating significant value in integrating molecular circuits for intelligent sensing.

2.
Anal Chem ; 95(36): 13659-13667, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37623910

RESUMO

Conventional electrochemical detection of microRNA (miRNA) encounters issues of poor sensitivity and fixed dynamic range. Here, we report a DNA tile and invading stacking primer-assisted CRISPR-Cas12a multiple amplification strategy to construct an entropy-controlled electrochemical biosensor for the detection of miRNA with tunable sensitivity and dynamic range. To amplify the signal, a cascade amplification of the CRISPR-Cas12a system along with invading stacking primer signal amplification (ISPSA) was designed to detect trace amounts of miRNA-31 (miR-31). The target miR-31 could activate ISPSA and produce numerous DNAs, triggering the cleavage of the single-stranded linker probe (LP) that connects a methylene blue-labeled DNA tile with a DNA tetrahedron to form a Y-shaped DNA scaffold on the electrode. Based on the decrease of current, miR-31 can be accurately and efficiently detected. Impressively, by changing the loop length of the LP, it is possible to finely tune the entropic contribution while keeping the enthalpic contribution constant. This strategy has shown a tunable limit of detection for miRNA from 0.31 fM to 0.56 pM, as well as a dynamic range from ∼2200-fold to ∼270,000-fold. Moreover, it demonstrated satisfactory results in identifying cancer cells with a high expression of miR-31. Our strategy broadens the application of conventional electrochemical biosensing and provides a tunable strategy for detecting miRNAs at varying concentrations.


Assuntos
Sistemas CRISPR-Cas , MicroRNAs , Entropia , Sistemas CRISPR-Cas/genética , DNA/genética , Eletrodos , MicroRNAs/genética
3.
Anal Chem ; 95(44): 16169-16175, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37878505

RESUMO

A label-free addressable photoelectric immunosensor array was designed for the detection of amyloid ß-proteins based on magnetic separation and self-calibration strategies. In this paper, Na2Ti6O13 with a flower-like morphology was prepared by the hydrothermal method; after continuously combining Fe3O4 and CdS, it was endowed with magnetism and better photoelectric activity. Subsequently, a series of reactions occurred in the solution, and the magnetic separation method was used to enrich the target. On the other hand, the ITO glass was separated into eight sites (2 × 4) using magnets, and a light shield was utilized to prevent light exposure, resulting in addressable and continuous detection. After the uniform preparation of magnetic photoelectric materials and precise control of testing conditions, the relative errors among different sites have been effectively reduced. Moreover, incorporating a self-calibration strategy has allowed the sensor array to achieve greater accuracy. The proposed photoelectrochemical biosensor exhibits a good relationship with amyloid ß-protein ranging from 0.01 to 100 ng mL-1 with a limit of detection of 1.1 pg mL-1 and exhibits excellent specificity, reproducibility, and stability.


Assuntos
Técnicas Biossensoriais , Compostos de Cádmio , Peptídeos beta-Amiloides , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Calibragem , Técnicas Eletroquímicas/métodos , Sulfetos , Limite de Detecção , Imunoensaio/métodos
4.
Anal Chem ; 95(29): 11113-11123, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37428145

RESUMO

Organophosphate pesticides are used in agriculture due to their high effectiveness and low persistence in eradicating insects and pests. However, conventional detection methods encounter the limitation of undesired detection specificity. Thus, screening phosphonate-type organophosphate pesticides (OOPs) from their analogues, phosphorothioate organophosphate pesticides (SOPs), remains a challenge. Here, we reported a d-penicillamine@Ag/Cu nanocluster (DPA@Ag/Cu NCs)-based fluorescence assay to screen OOPs from 21 kinds of organophosphate pesticides, which can be used for logic sensing and information encryption. Acetylthiocholine chloride was enzymatically split by acetylcholinesterase (AChE) to produce thiocholine, which reduced the fluorescence of DPA@Ag/Cu NCs due to the transmission of electrons from DPA@Ag/Cu NCs donor to the thiol group acceptor. Impressively, OOPs acted as an AChE inhibitor and retained the high fluorescence of DPA@Ag/Cu NCs due to the stronger positive electricity of the phosphorus atom. Conversely, SOPs possessed weak toxicity to AChE, which led to low fluorescence intensity. By setting 21 kinds of organophosphate pesticides as the inputs and the fluorescence of the resulting products as the outputs, DPA@Ag/Cu NCs could serve as a fluorescent nanoneuron to construct Boolean logic tree and complex logic circuit for molecular computing. As a proof of concept, by converting the selective response patterns of DPA@Ag/Cu NCs into binary strings, molecular crypto-steganography for encoding, storing, and concealing information was successfully achieved. This study is expected to advance the progress and practical application of nanoclusters in the area of logic detection and information security while also enhancing the relationship between molecular sensors and the world of information.


Assuntos
Antígenos de Grupos Sanguíneos , Inseticidas , Nanopartículas Metálicas , Organofosfonatos , Praguicidas , Penicilamina , Acetilcolinesterase , Compostos Organofosforados , Corantes , Organofosfatos , Lógica , Cobre , Praguicidas/análise
5.
Anal Chem ; 95(45): 16744-16753, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37929302

RESUMO

Tunable detection of microRNA is crucial to meet the desired demand for sample species with varying concentrations in clinical settings. Herein, we present a DNA walker-based molecular circuit for the detection of miRNA-21 (miR-21) with tunable dynamic ranges and sensitivity levels ranging from fM to pM. The phosphate-activated fluorescence of UiO-66-NH2 metal-organic framework nanoparticles was used as label-free fluorescence tags due to their competitive coordination effect with the Zr atom, which significantly inhibited the ligand-to-metal charge transfer. To achieve a tunable detection performance for miR-21, the ultraviolet sensitive o-nitrobenzyl was induced as a photocleavable linker, which was inserted at various sites between the loop and the stem of the hairpin probe to regulate the DNA strand displacement reaction. The dynamic range can be precisely regulated from 700- to 67,000-fold with tunable limits of detection ranging from 2.5 fM to 36.7 pM. Impressively, a Boolean logic tree and complex molecular circuit were constructed for logic computation and cancer diagnosis in clinical blood samples. This intelligent biosensing method presents a powerful solution for converting complex biosensing systems into actionable healthcare decisions and will facilitate early disease diagnosis.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Estruturas Metalorgânicas , MicroRNAs , Nanopartículas , DNA , MicroRNAs/genética , Técnicas Biossensoriais/métodos , Limite de Detecção
6.
Anal Chem ; 94(16): 6371-6379, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35426306

RESUMO

Although the CRISPR/Cas system has pioneered a new generation of analytical techniques, there remain many challenges in developing a label-free, accurate, and reliable CRISPR/Cas-based assay for reporting the levels of low abundance biomolecules in complex biological samples. Here, we reported a novel CRISPR-derived resonance Rayleigh scattering (RRS) amplification strategy and logical circuit based on a guanine nanowire (G-wire) assisted non-cross-linking hybridization chain reaction (GWancHCR) for label-free detection of lipopolysaccharide (LPS). In the presence of a target, the protospacer-adjacent motif-inserted aptamer is rationally designed to specifically combine with LPS rather than Cas12a, suppressing the trans-cleavage activity of CRISPR/Cas12a and retaining the reporter probes to trigger non-cross-linking aggregation. Owing to the automatic hybridization chain reaction (HCR), in the presence of Mg2+, the released G-quadruplex sequence aggregated to assemble the G-wire superstructure through non-cross-linking. As a result, a dramatically amplified RRS intensity is observed, allowing for reporting LPS levels in a low detection limit of 0.17 pg/mL and a wide linear range among 1.0-100.0 ng/mL. Moreover, this reaction event is capable of programming to perform classical Boolean logic tree analysis, including basic logic computing and complex integrated logic circuits. This study comprehensively analyzed with respect to information flow, matter (molecular events), and energy (RRS), revealing the potential promise in designing of molecular-level "Internet of Things", intelligent computing, and sensing systems.


Assuntos
Nanofios , Sistemas CRISPR-Cas/genética , Guanina , Lipopolissacarídeos , Lógica
7.
Anal Chem ; 94(48): 16796-16802, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36395421

RESUMO

The development of facile, reliable, and accurate assays for pathogenic bacteria is critical to environmental pollution surveillance, traceability analysis, prevention, and control. Here, we proposed a rolling circle amplification (RCA) strategy-driven visual photothermal smartphone-based biosensor for achieving highly sensitive monitoring of Escherichia coli (E. coli) in environmental media. In this design, E. coli could specifically bind with its recognition aptamer for initiating the RCA process on a magnetic bead (MB). Owing to the cleaving of UV irradiation toward photoresponsive DNA on MB, the RCA products were released to further hybridize with near-infrared excited CuxS-modified DNA probes. As a result, the photothermal signal was enhanced by RCA, while the background was decreased by UV irradiation and magnetic separation. The correspondingly generated photothermal signals were unambiguously recorded on a smartphone, allowing for an E. coli assay with a low detection limit of 1.8 CFU/mL among the broad linear range from 5.0 to 5.0 × 105 CFU/mL. Significantly, this proposed biosensor has been successfully applied to monitor the fouling levels of E. coli in spring water samples with acceptable results. This study holds great prospects by integrating a RCA-driven photothermal amplification strategy into a smartphone to develop accurate, reliable, and efficient analytical platforms against pathogenic bacteria pollutions for safeguarding environmental health.


Assuntos
Técnicas Biossensoriais , Infecções por Escherichia coli , Humanos , Escherichia coli/genética , Escherichia coli/metabolismo , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas Biossensoriais/métodos , DNA/genética , Fenômenos Magnéticos , Limite de Detecção
8.
Chembiochem ; 22(24): 3431-3436, 2021 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-34617654

RESUMO

Rapid and sensitive point-of-care testing (POCT) is an extremely critical mission in practical applications, especially for rigorous military medicine, home health care, and in the third world. Here, we report a visual POCT method for adenosine triphosphate (ATP) detection based on Taylor rising in the corner of quadratic geometries between two rod surfaces. We discuss the principle of Taylor rising, demonstrating that it is significantly influenced by contact angle, surface tension, and density of the sample, which are controlled by ATP-dependent rolling circle amplification (RCA). In the presence of ATP, RCA reaction effectively suppresses Taylor-rising behavior, due to the increased contact angle, density, and decreased surface tension. Without addition of ATP, untriggered RCA reaction is favorable for Taylor rising, resulting in a significant height. With this proposed method, visual sensitive detection of ATP without the aid of other instruments is realized with only a 5 µL droplet, which has good selectivity and a low detection limit (17 nM). Importantly, this visual method provides a promising POCT tool for user-friendly molecular diagnostics.


Assuntos
Trifosfato de Adenosina/genética , Técnicas Biossensoriais , Técnicas de Amplificação de Ácido Nucleico , Testes Imediatos , Humanos
9.
Nanotechnology ; 32(41)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34198279

RESUMO

Since visible-light (VL) accounting for massive solar radiation energy, a large amount of attention has been paid to the development of highly efficient visible-light-driven (VLD) semiconductor materials. However, despite recent efforts to construct VL active material, hollow structure-based silver iodide (AgI) with appropriate band gap and a large surface area are limited because of lack of a proper synthesis method. Herein, hollow AgI with p-type semiconductor behavior is constructed on the basis of micro-emulsion strategy, which enables admirable cathode photoelectrochemical (PEC) response. The as-prepared hollow AgI is applied to fabricate the PEC sensing platform and reveals a low limit of detection of 0.04 fM and a wide dynamic range up to 5 orders of magnitude toward H2S. The PEC sensing mechanism is supposed to the 'signal-off' pattern on account of the ultralow solubility product (Ksp) of Ag2S, derived from the precipitation reaction due to the high affinity between sulfide ion and Ag+. Besides, the hollow structure of AgI provides sufficient surface area forin situproducing Ag2S that serves as recombination center of carrier, thus causing the efficient quenching of photocurrent signals. This work broadens the horizon of structuring VLD semiconductor nanomaterials andKsp-based H2S sensing.

10.
Mikrochim Acta ; 186(8): 550, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31325059

RESUMO

A pH-responsive superwettable chip is described whose surface can switch between superhydrophobic and superhydrophilic. It can be used for the visual detection of the prostate specific antigen (PSA) based on contact angle readout. Magnetic beads were modified with primary antibody against PSA. After immunobinding, gold nanoparticles loaded with secondary antibody labeled with glucose oxidase is added. On addition of glucose, gluconic acid is formed which causes a drop in the local pH value. This results in a wettability switch of the pH-responsive superwettable chip from hydrophobic to hydrophilic. Under the optimized conditions, PSA can be quantified with a 3.2 pg mL-1 limit of detection by analyzing the contact angle and the related color that changes from blue via orange to red. The method is applicable to PSA detection in serum samples and for visual classification by cancer patients and healthy persons. It is also suitable for color-blind and color-weak individuals. Conceivably, this kind of assay can be transferred to the determination of various kinds of other bioanalytes including nucleotide, proteins, and even of ions and small organic molecules, and thus is has a wide scope. Graphical abstract Schematic presentation of a pH-responsive superwettable chip coated with silica nanoparticles for the visual detection of prostate specific antigen (PSA) by reading the contact angle. The superwettable chip achieves reliable clinical detection of serum PSA from prostate cancer patients.


Assuntos
Imunoensaio/métodos , Nanopartículas de Magnetita/química , Antígeno Prostático Específico/sangue , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Ouro/química , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Limite de Detecção , Nanopartículas Metálicas/química , Dióxido de Silício/química
11.
Anal Chem ; 88(2): 1385-90, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26704253

RESUMO

A novel signal-on and label-free resonance Rayleigh scattering (RRS) aptasensor was constructed for detection of Hg(2+) based on Hg(2+)-triggered Exonuclease III-assisted target recycling and growth of G-quadruplex nanowires (G-wires) for signal amplification. The hairpin DNA (H-DNA) was wisely designed with thymine-rich recognition termini and a G-quadruplex sequence in the loop and employed as a signal probe for specially recognizing trace Hg(2+) by a stable T-Hg(2+)-T structure, which automatically triggered Exonuclease III (Exo-III) digestion to recycle Hg(2+) and liberate the G-quadruplex sequence. The free G-quadruplex sequences were self-assembled into guanine nanowire (G-wire) superstructure in the presence of Mg(2+) and demonstrated by gel electrophoresis. The RRS intensity was dramatically amplified by the resultant G-wires, and the maximum RRS signal at 370 nm was linear with the logarithm of Hg(2+) concentration in the range of 50.0 pM to 500.0 nM (R = 0.9957). Selectivity experiments revealed that the as-prepared RRS sensor was specific for Hg(2+), even coexisting with high concentrations of other metal ions. This optical aptasensor was successfully applied to identify Hg(2+) in laboratory tap water and river water samples. With excellent sensitivity and selectivity, the proposed RRS aptasensor was potentially suitable for not only routine detection of Hg(2+) in environmental monitoring but also various target detection just by changing the recognition sequence of the H-DNA probe.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , DNA/metabolismo , Exodesoxirribonucleases/metabolismo , Quadruplex G , Mercúrio/análise , Mercúrio/metabolismo , Nanoestruturas/química , Técnicas de Amplificação de Ácido Nucleico , Aptâmeros de Nucleotídeos/química , DNA/química , Exodesoxirribonucleases/química , Espalhamento de Radiação , Ressonância de Plasmônio de Superfície
12.
Anal Chem ; 88(23): 11444-11449, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27934113

RESUMO

The efficiency of photon-to-electron conversion is extremely restricted by the electron-hole recombinant. Here, a new photoelectrochemical (PEC) sensing platform has been established based on the signal amplification of click chemistry (CC) via hybridization chain reaction (HCR) for highly sensitive microRNA (miRNA) assay. In this proposal, a preferred electron donor dopamine (DA) was first assembled with designed ligation probe (probe-N3) via amidation reaction to achieve DA-coordinated signal probe (PDA-N3). The PDA-N3 served as a flexible trigger to signal amplification through efficiently suppressing the electron-hole recombinant. Specifically, the PDA-N3 can be successfully ligated into the trapped hairpins (H1 and H2) via the superior ligation method of metal-catalyst-free CC, in which the electron donor DA was introduced into the assay system. Moreover, the enzyme-free HCR, employed as a versatile amplification way, ensures that lots of PDA-N3 can be attached to the substrate. This PEC sensing for miRNA-141 detection illustrated the outstanding linear response to a concentration variation from 0.1 fM to 0.5 nM and a detection limit down to 27 aM, without additional electron donors. The sensor is further employed to monitor miRNA-141 from prostate carcinoma cell (22Rv1), showing good quantitative detection capability. This strategy exquisitely influences the analytical performance and offers a new PEC route to highly selective and sensitive detection of biological molecules.


Assuntos
Técnicas Biossensoriais , Bismuto/química , Dissulfetos/química , Dopamina/química , Técnicas Eletroquímicas , MicroRNAs/análise , Molibdênio/química , Neoplasias da Próstata/química , Sulfetos/química , Linhagem Celular Tumoral , Química Click , Células HeLa , Humanos , Masculino , Nanoestruturas/química , Técnicas de Amplificação de Ácido Nucleico , Tamanho da Partícula , Processos Fotoquímicos , Propriedades de Superfície
13.
Anal Chem ; 87(3): 1575-81, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25608944

RESUMO

A multidimensional optical sensing platform which combines the advantages of resonance Rayleigh scattering (RRS), fluorescence, and colorimetry has been designed for detection of heparin. Phloxine B, a fluorescein derivative showing the special RRS spectrum in the long wavelength region, was selected to develop an easy-to-get system which can achieve switch-on sensing to obtain high sensitivity. The noise level of RRS in the long wavelength region is much weaker, and the reproducibility is much better; in this way, the sensitivity and selectivity can be improved. In the absence of heparin, the phloxine B and polyethyleneimine (PEI) form a complex through electrostatic interaction. Thus, the RRS signal at 554 nm is low; the phloxine B fluorescence is quenched, and the absorption signal is low. In the presence of heparin, competitive binding occurred between phloxine B and heparin toward PEI; then, phloxine B is gradually released from the phloxine B/PEI complex, causing obvious enhancement of the RRS, fluorescence, and absorption signals. Besides, the desorption of phloxine B is less effective for the heparin analogues, such as hyaluronic acid and chondroitin sulfate. In addition, the system presents a low detection limit of heparin to 5.0 × 10(-4) U mL(-1) and can also be applied to the detection of heparin in heparin sodium injection and 50% human serum samples with satisfactory results. Finally, the potential application of this method in reversible on-off molecular logic gate fabrication was discussed using the triple-channel optical signals as outputs.


Assuntos
Técnicas Biossensoriais/métodos , Azul de Eosina I/química , Corantes Fluorescentes/química , Heparina/análise , Imagem Óptica/métodos , Polietilenoimina/química , Fluorescência , Heparina/isolamento & purificação , Humanos , Limite de Detecção , Espalhamento de Radiação , Espectrometria de Fluorescência
14.
Anal Chem ; 87(17): 8679-86, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26236923

RESUMO

Multicolor polymer nanoparticles (or dots) were prepared via the reaction between hyperbranched polyethyleneimine (PEI) and aldehydes, and when the concentration of aldehydes was lower, the final mixture displayed gelation behavior. This phenomenon can be applied to visual detection of aldehydes. Moreover, the colors of the polymer dots and gel are varied by using different kinds of aldehydes, which can be utilized for visual discrimination of aldehydes. For simplicity, we focus our attention on the interaction between PEI and formaldehyde. The nanoparticles show an average diameter of 42 nm, emit bright cyan fluorescence with high quantum yield, and exhibit high water dispersibility and excellent photostability. Due to the advantages, our polymer nanoparticles (PNPs) are utilized as a fluorescent probe for imaging in living SK-N-SH cells. Furthermore, valuable explorations have been carried out on the fundamental properties of PNPs, such as concentration-dependent fluorescence, pH-dependent fluorescence, and solvent effect.

15.
Anal Chem ; 86(5): 2543-8, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24527790

RESUMO

Although various strategies have been reported for single-nucleotide polymorphisms (SNPs) detection, development of a time-saving, specific, and regenerated electrochemical sensing platform still remains a realistic goal. In this study, an ON-OFF switching of a regenerated biosensor based on a locked nucleic acid (LNA)-integrated and toehold-mediated strand displacement reaction technique is constructed for detection of SNPs. The LNA-integrated and methylene blue-labeled capture probe with an external toehold is designed to switch on the sensing system. The mutant-type DNA probe completes complementary with the capture probe to trigger the strand displacement reaction, which switches off the sensing system. However, when the single-base mismatched wild-type DNA probe is presented, the strand displacement reaction cannot be achieved; therefore, the sensing system still keeps the ON state. This DNA sensor is stable over five reuses. We further testify that the LNA-integrated sequence has better recognition ability for SNPs detection compared to the DNA-integrated sequence. Moreover, this DNA senor exhibits a remarkable discrimination capability of SNPs among abundant wild-type targets and 6000-fold (m/m) excess of genomic DNA. In addition, it is selective enough in complex and contaminant-ridden samples, such as human urine, soil, saliva, and beer. Overall, these results demonstrate that this reliable DNA sensor is easy to be fabricated, simple to operate, and stable enough to be readily regenerated.


Assuntos
Técnicas Biossensoriais , Oligonucleotídeos/química , Polimorfismo de Nucleotídeo Único , Estudos de Viabilidade
16.
Talanta ; 272: 125780, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359722

RESUMO

Mercury ion (Hg2+) poses a serious threat to human health due to its high toxicity. In this study, a smartphone-based photoelectrochemical sensor based on oxygen vacancies (OVs) driven signal enhancement for mercury ion detection was designed. BiVO4-x/Bi2S3/AuNPs were combined with T-Hg2+-T recognition mode to construct a multi-sandwich photoelectrochemical sensor. On the one hand, the OVs can increase the adsorption of light by the materials and enhance the photocurrent response as well as the superconductivity of Au NPs to accelerate the charge transfer at the electrode interface. On the other hand, the multi-sandwich structure was exploited to increase the binding site of Hg2+, as well as the T-Hg2+-T structure for sensitive recognition of Hg2+ and signal amplification. The sensor showed good linearity for Hg2+ concentration in the range of 0.1 nM-1.0 µM with a detection limit of 4.8 pM (S/N = 3). Eventually the smartphone-based real-time detection sensor is expected to contribute to the future analysis of heavy metal ions.

17.
Anal Chim Acta ; 1298: 342407, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38462332

RESUMO

The accurate diagnosis of diseases can be improved by detecting multiple biomarkers simultaneously. This study presents the development of a magnetic photoelectrochemical (PEC) immunosensor array for the simultaneous detection of amyloid-ß 42 (Aß) and microtubule-associated protein (Tau), which are markers for neurodegenerative disorders. A metal-organic framework (MOF) derivative, Fe2O3@FeS2 magnetic composites with exceptional photoelectric and ferromagnetic properties was synthesized while preserving the original structure and advantages. Thus, the immunoassembly process of the sensor can be carried out in homogeneous solution and recovered by magnetic separation. For simultaneous detection, a chip is divided into multiple independent sensing sites, which have the same preparation and detection environment, allowing for the implementation of a self-calibration method. The sensor array demonstrates considerable detection ranges of 0.01-100 ng mL-1 for Aß and 0.05-100 ng mL-1 for Tau, with low detection limits of 2.1 pg mL-1 for Aß and 7.9 pg mL-1 for Tau. The PEC sensor array proposed in this study exhibits exceptional stability, selectivity, and reproducibility, providing a new method for detecting multiple markers.


Assuntos
Técnicas Biossensoriais , Técnicas Biossensoriais/métodos , Reprodutibilidade dos Testes , Imunoensaio/métodos , Peptídeos beta-Amiloides , Fenômenos Magnéticos , Técnicas Eletroquímicas/métodos , Limite de Detecção
18.
Sci Adv ; 9(20): eadf5868, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37196083

RESUMO

Deoxyribonucleic acid (DNA) provides a collection of intelligent tools for the development of information cryptography and biosensors. However, most conventional DNA regulation strategies rely solely on enthalpy regulation, which suffers from unpredictable stimuli-responsive performance and unsatisfactory accuracy due to relatively large energy fluctuations. Here, we report an enthalpy and entropy synergistic regulation-based pH-responsive A+/C DNA motif for programmable biosensing and information encryption. In the DNA motif, the variation in loop length alters entropic contribution, and the number of A+/C bases regulates enthalpy, which is verified through thermodynamic characterizations and analyses. On the basis of this straightforward strategy, the performances, such as pKa, of the DNA motif can be precisely and predictably tuned. The DNA motifs are finally successfully applied for glucose biosensing and crypto-steganography systems, highlighting their potential in the field of biosensing and information encryption.


Assuntos
Técnicas Biossensoriais , DNA , Entropia , Motivos de Nucleotídeos , Termodinâmica
19.
Front Bioeng Biotechnol ; 10: 872984, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35419350

RESUMO

Bioinspired superwettable materials have aroused wide interests in recent years for their promising application fields from service life to industry. As one kind of emerging application, the superwettable surfaces used to fabricate biosensors for the detection of disease biomarkers, especially tumor biomarkers, have been extensively studied. In this mini review, we briefly summarized the sensing strategy for disease biomarker detection based on superwettable biosensors, including fluorescence, electrochemistry, surface-enhanced Raman scattering, and visual assays. Finally, the challenges and direction for future development of superwettable biosensors are also discussed.

20.
Technol Cancer Res Treat ; 21: 15330338221110670, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35790461

RESUMO

Inspired by nature, superwettable material-based biosensors have aroused wide interests due to their potential in cancer biomarker detection. This mini review mainly summarized the superwettable materials as novel biosensing substrates for the development of evaporation-induced enrichment-based signal amplification and visual biosensing method. Biosensing applications based on the superhydrophobic surfaces, superwettable micropatterned surfaces, and slippery lubricant-infused porous surfaces for various cancer biomarker detections were described in detail. Finally, an insight of remaining challenges and perspectives of superwettable biosensor is proposed.


Assuntos
Técnicas Biossensoriais , Neoplasias , Biomarcadores Tumorais , Humanos , Neoplasias/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA