Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 613(7942): 179-186, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36517594

RESUMO

Diffuse gliomas, particularly glioblastomas, are incurable brain tumours1. They are characterized by networks of interconnected brain tumour cells that communicate via Ca2+ transients2-6. However, the networks' architecture and communication strategy and how these influence tumour biology remain unknown. Here we describe how glioblastoma cell networks include a small, plastic population of highly active glioblastoma cells that display rhythmic Ca2+ oscillations and are particularly connected to others. Their autonomous periodic Ca2+ transients preceded Ca2+ transients of other network-connected cells, activating the frequency-dependent MAPK and NF-κB pathways. Mathematical network analysis revealed that glioblastoma network topology follows scale-free and small-world properties, with periodic tumour cells frequently located in network hubs. This network design enabled resistance against random damage but was vulnerable to losing its key hubs. Targeting of autonomous rhythmic activity by selective physical ablation of periodic tumour cells or by genetic or pharmacological interference with the potassium channel KCa3.1 (also known as IK1, SK4 or KCNN4) strongly compromised global network communication. This led to a marked reduction of tumour cell viability within the entire network, reduced tumour growth in mice and extended animal survival. The dependency of glioblastoma networks on periodic Ca2+ activity generates a vulnerability7 that can be exploited for the development of novel therapies, such as with KCa3.1-inhibiting drugs.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , NF-kappa B/metabolismo , Sistema de Sinalização das MAP Quinases , Sinalização do Cálcio , Morte Celular , Análise de Sobrevida , Cálcio/metabolismo
3.
Cell Mol Life Sci ; 80(4): 98, 2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36932186

RESUMO

The development and survival of adult-born neurons are believed to be driven by sensory signaling. Here, in vivo analyses of motility, morphology and Ca2+ signaling, as well as transcriptome analyses of adult-born juxtaglomerular cells with reduced endogenous excitability (via cell-specific overexpression of either Kv1.2 or Kir2.1 K+ channels), revealed a pronounced impairment of migration, morphogenesis, survival, and functional integration of these cells into the mouse olfactory bulb, accompanied by a reduction in cytosolic Ca2+ fluctuations, phosphorylation of CREB and pCREB-mediated gene expression. Moreover, K+ channel overexpression strongly downregulated genes involved in neuronal migration, differentiation, and morphogenesis and upregulated apoptosis-related genes, thus locking adult-born cells in an immature and vulnerable state. Surprisingly, cells deprived of sensory-driven activity developed normally. Together, the data reveal signaling pathways connecting the endogenous intermittent neuronal activity/Ca2+ fluctuations as well as enhanced Kv1.2/Kir2.1 K+ channel function to migration, maturation, and survival of adult-born neurons.


Assuntos
Neurônios , Bulbo Olfatório , Camundongos , Animais , Bulbo Olfatório/metabolismo , Neurônios/metabolismo , Neurogênese/genética , Diferenciação Celular , Movimento Celular
4.
J Physiol ; 601(19): 4203-4215, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35315518

RESUMO

Under physiological conditions microglia, the immune sentinels of the brain, constantly monitor their microenvironment. In the case of danger, damage or cell/tissue dyshomeostasis, they react with changes in process motility, polarization, directed process movement, morphology and gene expression profile; release pro- and anti-inflammatory mediators; proliferate; and clean brain parenchyma by means of phagocytosis. Based on recent transcriptomic and in vivo Ca2+ imaging data, we argue that the local cell/tissue dyshomeostasis is sensed by microglia via intracellular Ca2+ signals, many of which are mediated by Ca2+ release from the intracellular Ca2+ stores. These signals encode the strength, duration and spatiotemporal pattern of the stimulus and, at the same time, relay this information further to trigger the respective Ca2+ -dependent effector pathways. We also point to the fact that microglial Ca2+ signalling is sexually dimorphic and undergoes profound changes across the organism's lifespan. Interestingly, the first changes in microglial Ca2+ signalling are visible already in 9- to 11-month-old mice, roughly corresponding to 40-year-old humans.


Assuntos
Cálcio , Microglia , Camundongos , Humanos , Animais , Lactente , Microglia/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Cálcio da Dieta , Perfilação da Expressão Gênica
5.
Glia ; 71(12): 2884-2901, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37596829

RESUMO

Microglia, the major immune cells of the brain, are functionally heterogeneous but in vivo functional properties of these cells are rarely studied at single-cell resolution. By using microRNA-9 regulated viral vectors for multicolor labeling and longitudinal in vivo monitoring of individual microglia, we followed their fate in the cortex of healthy adult mice and at the onset of amyloidosis in a mouse model of Alzheimer's disease. In wild-type mice, microglia were rather mobile (16% of the cells migrated at least once in 10-20 days) but had a low turnover as documented by low division and death rates. Half of the migratory events were tightly associated with blood vessels. Surprisingly, basic migration properties of microglia (i.e., fraction of migrating cells, saltatory migration pattern, speed of migration, translocation distance, and strong association with blood vessels) were preserved in amyloid-depositing brains, despite amyloid plaques becoming the major destination of migration. Besides, amyloid deposition significantly increased microglial division and death rates. Moreover, the plaque vicinity became a hotspot of microglial turnover, harboring 33% of all migration, 70% of death and 54% of division events.

6.
Biogerontology ; 23(5): 559-570, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35915171

RESUMO

Every-other-day fasting (EODF) is one type of caloric restriction that is proposed to have significant health benefits, including slowing aging-related processes. The present study evaluated multiple parameters of blood homeostasis comparing mice of different ages and mice on different diet regimes: ad libitum (AL) versus EODF. Hematological and classical biochemical parameters of blood were measured in young (6-month), middle-aged (12-month) and old (18-month) C57BL/6J mice of both sexes subjected either to EODF, or AL feeding. Middle-aged AL males showed a decrease in erythrocyte and total leucocyte counts and an increase in plasma alkaline phosphatase activity, whereas old animals showed a decrease in relative levels of lymphocytes and an increase in relative levels of neutrophils, a decrease in plasma lactate and an increase in total cholesterol levels, compared to young mice. AL-fed females demonstrated higher stability of blood parameters during aging than males did. The EODF regimen did not significantly affect hematological parameters in females but prevented a decline in total leukocyte count with age in males. In both sexes, EODF partially prevented age-associated changes in levels of plasma lactate and cholesterol and activity of alkaline phosphatase. Thus, during normal aging, mice showed a sex-dependent maintenance of blood homeostasis which was not significantly affected by EODF.


Assuntos
Jejum , Longevidade , Envelhecimento , Fosfatase Alcalina , Animais , Colesterol , Feminino , Lactatos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
BMC Med Educ ; 22(1): 3, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980108

RESUMO

BACKGROUND: The social distancing and suspension of on-campus learning, imposed by the COVID-19 pandemic, are likely to influence medical training for months if not years. Thus, there is a need for digital replacement for classroom teaching, especially for hands-on courses, during which social distancing is hardly possible. Here, we investigated students' learning experience with a newly designed digital training course in neurophysiology, with intercalated teaching blocks in either asynchronous (unsupervised online lectures and e-labs) or synchronous (online seminars, supervised by instructors) formats. METHODS: The accompanying anonymized prospective study included 146 student participants. At the beginning and the end of the course, students were invited to answer anonymous online questionnaires with 18 and 25 items, respectively. We conducted both qualitative analyses of students' survey responses and statistical analyses of the results of cohort-specific summative examinations. The summative assessment results were compared both between 4 current cohorts and with the respective historical cohorts. RESULTS: Despite having little prior experience with e-learning (4.5 on the 1-7 scale), students adapted remarkably well to this online format. They appreciated its higher flexibility, time efficiency, student-oriented nature (especially when using inverted classroom settings), tolerance towards the individual learning style and family circumstances, and valued the ability to work through lectures and e-labs at their own learning speed. The major complaints concerned diminished social contacts with instructors and fellow students, the inability to ask questions as they occur, and the lack of sufficient technical expertise. The students valued the newly developed e-labs, especially the implementation of interactive preparative measures (PreLabs) and the intuitive lab design offered by the chosen software (Lt Platform from AD Instruments). The summative examinations at the end of the course documented the quality of knowledge transfer, which was comparable to that of previous classically instructed cohorts. CONCLUSION: Despite the missing personal contact between the faculty and the students, inherent to online teaching, the all-digital training course described here proofed to be of good educational value and, in case the pandemic continues, is worse considering for the future. Some of the described building blocks, like digital lectures or interactive PreLabs, may survive the pandemics to enrich the medical education toolbox in the future.


Assuntos
COVID-19 , Educação a Distância , Humanos , Neurofisiologia , Pandemias , Estudos Prospectivos , SARS-CoV-2
8.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806059

RESUMO

Cyclic guanosine monophosphate (cGMP) is a ubiquitous second messenger and a key molecule in many important signaling cascades in the body and brain, including phototransduction, olfaction, vasodilation, and functional hyperemia. Additionally, cGMP is involved in long-term potentiation (LTP), a cellular correlate of learning and memory, and recent studies have identified the cGMP-increasing drug Sildenafil as a potential risk modifier in Alzheimer's disease (AD). AD development is accompanied by a net increase in the expression of nitric oxide (NO) synthases but a decreased activity of soluble guanylate cyclases, so the exact sign and extent of AD-mediated imbalance remain unclear. Moreover, human patients and mouse models of the disease present with entangled deregulation of both cGMP and Ca2+ signaling, e.g., causing changes in cGMP-mediated Ca2+ release from the intracellular stores as well as Ca2+-mediated cGMP production. Still, the mechanisms governing such interplay are poorly understood. Here, we review the recent data on mechanisms underlying the brain cGMP signaling and its interconnection with Ca2+ signaling. We also discuss the recent evidence stressing the importance of such interplay for normal brain function as well as in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Doença de Alzheimer/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Potenciação de Longa Duração/fisiologia , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo
9.
Pflugers Arch ; 473(5): 805-821, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33608800

RESUMO

Olfaction, or the sense of smell, is one of the most ancient senses in men and mice, important for a large variety of innate and acquired behaviors. Clinical data reveal an early impairment of olfaction during normal aging and in the course of neurodegenerative diseases, but the underlying cellular/molecular mechanisms remain obscure. In the current review, we compare different aspects of the aging- and Alzheimer's disease related impairment of olfaction in men and mice, aiming at the identification of common morbidities and biomarkers, which can be analyzed in detail in the appropriate mouse models. We also identify common, often interdependent (patho)physiological pathways, including but not limited to extracellular amyloid depositions, neuroinflammation, ɛ4 allele of the apolipoprotein E, CNS insulin resistance, and the impairment of adult neurogenesis, to be targeted by basic and clinical research.


Assuntos
Envelhecimento/fisiologia , Doença de Alzheimer/fisiopatologia , Encéfalo/fisiologia , Percepção Olfatória , Olfato , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiopatologia , Humanos , Camundongos
10.
Brain Behav Immun ; 96: 113-126, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34052361

RESUMO

Peripheral inflammation is known to impact brain function, resulting in lethargy, loss of appetite and impaired cognitive abilities. However, the channels for information transfer from the periphery to the brain, the corresponding signaling molecules and the inflammation-induced interaction between microglia and neurons remain obscure. Here, we used longitudinal in vivo two-photon Ca2+ imaging to monitor neuronal activity in the mouse cortex throughout the early (initiation) and late (resolution) phases of peripheral inflammation. Single peripheral lipopolysaccharide injection induced a substantial but transient increase in ongoing neuronal activity, restricted to the initiation phase, whereas the impairment of visual processing was selectively observed during the resolution phase of systemic inflammation. In the frontal/motor cortex, the initiation phase-specific cortical hyperactivity was seen in the deep (layer 5) and superficial (layer 2/3) pyramidal neurons but not in the axons coming from the somatosensory cortex, and was accompanied by reduced activity of layer 2/3 cortical interneurons. Moreover, the hyperactivity was preserved after depletion of microglia and in NLRP3-/- mice but absent in TNF-α-/- mice. Together, these data identify microglia-independent and TNF-α-mediated reduction of cortical inhibition as a likely cause of the initiation phase-specific cortical hyperactivity and reveal the resolution phase-specific impairment of sensory processing, presumably caused by activated microglia.


Assuntos
Inflamação , Microglia , Animais , Camundongos , Neurônios , Células Piramidais , Córtex Somatossensorial
11.
Biogerontology ; 22(3): 315-328, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33786674

RESUMO

The cerebellum is considered to develop aging markers more slowly than other parts of the brain. Intensification of free radical processes and compromised bioenergetics, critical hallmarks of normal brain aging, may be slowed down by caloric restriction. This study aimed to evaluate the intensity of oxidative stress and the enzymatic potential to utilize glucose via glycolysis or the pentose phosphate pathway (PPP) in the cerebellum of mice under ad libitum versus every-other-day fasting (EODF) feeding regimens. Levels of lipid peroxides, activities of antioxidant and key glycolytic and PPP enzymes were measured in young (6-month), middle-aged (12-month) and old (18-month) C57BL/6J mice. The cerebellum showed the most dramatic increase in lipid peroxide levels, antioxidant capacity and PPP key enzyme activities and the sharpest decline in the activities of key glycolytic enzymes under transition from young to middle age but these changes slowed when transiting from middle to old age. A decrease in the activity of the key glycolytic enzyme phosphofructokinase was accompanied by a concomitant increase in the activities of hexokinase and glucose-6-phosphate dehydrogenase (G6PDH), which may suggest that during normal cerebellar aging glucose metabolism shifts from glycolysis to the pentose phosphate pathway. The data indicate that intensification of free radical processes in the cerebellum occurred by middle age and that activation of the PPP together with increased antioxidant capacity can help to resist these changes into old age. However, the EODF regime did not significantly modulate or alleviate any of the metabolic processes studied in this analysis of the aging cerebellum.


Assuntos
Jejum , Longevidade , Animais , Cerebelo , Glucose , Glicólise , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo
12.
Nature ; 528(7580): 93-8, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26536111

RESUMO

Astrocytic brain tumours, including glioblastomas, are incurable neoplasms characterized by diffusely infiltrative growth. Here we show that many tumour cells in astrocytomas extend ultra-long membrane protrusions, and use these distinct tumour microtubes as routes for brain invasion, proliferation, and to interconnect over long distances. The resulting network allows multicellular communication through microtube-associated gap junctions. When damage to the network occurred, tumour microtubes were used for repair. Moreover, the microtube-connected astrocytoma cells, but not those remaining unconnected throughout tumour progression, were protected from cell death inflicted by radiotherapy. The neuronal growth-associated protein 43 was important for microtube formation and function, and drove microtube-dependent tumour cell invasion, proliferation, interconnection, and radioresistance. Oligodendroglial brain tumours were deficient in this mechanism. In summary, astrocytomas can develop functional multicellular network structures. Disconnection of astrocytoma cells by targeting their tumour microtubes emerges as a new principle to reduce the treatment resistance of this disease.


Assuntos
Astrocitoma/patologia , Neoplasias Encefálicas/patologia , Junções Comunicantes/metabolismo , Animais , Astrocitoma/metabolismo , Astrocitoma/radioterapia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/radioterapia , Comunicação Celular/efeitos da radiação , Morte Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Extensões da Superfície Celular/metabolismo , Extensões da Superfície Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Conexina 43/metabolismo , Progressão da Doença , Proteína GAP-43/metabolismo , Junções Comunicantes/efeitos da radiação , Glioma/metabolismo , Glioma/patologia , Glioma/radioterapia , Humanos , Masculino , Camundongos , Camundongos Nus , Invasividade Neoplásica , Tolerância a Radiação/efeitos dos fármacos
13.
Proc Natl Acad Sci U S A ; 115(6): E1279-E1288, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29358403

RESUMO

Neuronal hyperactivity is the emerging functional hallmark of Alzheimer's disease (AD) in both humans and different mouse models, mediating an impairment of memory and cognition. The mechanisms underlying neuronal hyperactivity remain, however, elusive. In vivo Ca2+ imaging of somatic, dendritic, and axonal activity patterns of cortical neurons revealed that both healthy aging and AD-related mutations augment neuronal hyperactivity. The AD-related enhancement occurred even without amyloid deposition and neuroinflammation, mainly due to presenilin-mediated dysfunction of intracellular Ca2+ stores in presynaptic boutons, likely causing more frequent activation of synaptic NMDA receptors. In mutant but not wild-type mice, store emptying reduced both the frequency and amplitude of presynaptic Ca2+ transients and, most importantly, normalized neuronal network activity. Postsynaptically, the store dysfunction was minor and largely restricted to hyperactive cells. These findings identify presynaptic Ca2+ stores as a key element controlling AD-related neuronal hyperactivity and as a target for disease-modifying treatments.


Assuntos
Doença de Alzheimer/patologia , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Modelos Animais de Doenças , Inflamação/patologia , Neurônios/patologia , Presenilina-1/fisiologia , Envelhecimento , Doença de Alzheimer/metabolismo , Animais , Humanos , Inflamação/metabolismo , Camundongos , Neurônios/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/patologia , Transdução de Sinais
14.
Int J Mol Sci ; 22(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499206

RESUMO

Microglia, the innate immune cells of the brain, are commonly perceived as resident macrophages of the central nervous system (CNS). This definition, however, requires further specification, as under healthy homeostatic conditions, neither morphological nor functional properties of microglia mirror those of classical macrophages. Indeed, microglia adapt exceptionally well to their microenvironment, becoming a legitimate member of the cellular brain architecture. The ramified or surveillant microglia in the young adult brain are characterized by specific morphology (small cell body and long, thin motile processes) and physiology (a unique pattern of Ca2+ signaling, responsiveness to various neurotransmitters and hormones, in addition to classic "immune" stimuli). Their numerous physiological functions far exceed and complement their immune capabilities. As the brain ages, the respective changes in the microglial microenvironment impact the functional properties of microglia, triggering further rounds of adaptation. In this review, we discuss the recent data showing how functional properties of microglia adapt to age-related changes in brain parenchyma in a sex-specific manner, with a specific focus on early changes occurring at middle age as well as some strategies counteracting the aging of microglia.


Assuntos
Envelhecimento , Encéfalo/fisiologia , Microglia/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Restrição Calórica , Sistema Nervoso Central/citologia , Feminino , Humanos , Macrófagos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Neurônios/fisiologia , Neurotransmissores/metabolismo , Fagocitose , Fenótipo , Fatores Sexuais , Transdução de Sinais , Transcrição Gênica , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
15.
Brain Behav Immun ; 87: 243-255, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31837418

RESUMO

Peripheral inflammation is known to trigger a mirror inflammatory response in the brain, involving brain's innate immune cells - microglia. However, the functional phenotypes, which these cells adopt in the course of peripheral inflammation, remain obscure. In vivo two-photon imaging of microglial Ca2+ signaling as well as process motility reveals two distinct functional states of cortical microglia during a lipopolysaccharide-induced peripheral inflammation: an early "sensor state" characterized by dramatically increased intracellular Ca2+ signaling but ramified morphology and a later "effector state" characterized by slow normalization of intracellular Ca2+ signaling but hypertrophic morphology, substantial IL-1ß production in a subset of cells as well as increased velocity of directed process extension and loss of coordination between individual processes. Thus, lipopolysaccharide-induced microglial Ca2+ signaling might represent the central element connecting receptive and executive functions of microglia.


Assuntos
Inflamação , Microglia , Encéfalo , Humanos , Lipopolissacarídeos , Transdução de Sinais
16.
Neurobiol Dis ; 121: 315-326, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366066

RESUMO

Besides deficits in memory and cognition, impaired visual processing is common for Alzheimer's disease (AD) patients and mouse models of AD but underlying mechanisms still remain unclear. Using in vivo Ca2+ imaging of the mouse primary visual cortex (V1) we tested whether such impairment is caused by neuronal hyperactivity, an emerging functional hallmark of AD. Profound neuronal hyperactivity was indeed found in V1 of APPSWE/PS1G384A and even of PS1G384A mice, presenting neither with plaque accumulation nor with neuroinflammation. This hyperactivity was accompanied by over-responsiveness to visual stimuli and impaired visual tuning properties of individual neurons, largely caused by insufficient suppression of responses to non-preferred orientation/direction stimuli. Moreover, visual stimulation robustly suppressed the ongoing spontaneous activity in WT but not in APPSWE/PS1G384A mice. Emptying intracellular Ca2+ stores significantly reduced neuronal hyperactivity and the pathological over-responsiveness to visual stimuli, but could not rescue stimulus-induced suppression of spontaneous activity and impaired tuning properties of individual cells. Thus, our data identify the AD-mediated dysfunction of intracellular Ca2+ stores as a main cause of pathologically increased visual responsiveness in APPSWE/PS1G384A mice. At the same time, the impairment of visual tuning and the stimulus-induced suppression of spontaneous activity, identified in this study, are likely caused by different mechanisms as, for example, dysfunction of local interneurons.


Assuntos
Doença de Alzheimer/fisiopatologia , Sinalização do Cálcio , Neurônios/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Modelos Animais de Doenças , Potenciais Evocados Visuais , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estimulação Luminosa
17.
Int J Mol Sci ; 20(3)2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30704036

RESUMO

Brain aging is characterized by a chronic, low-grade inflammatory state, promoting deficits in cognition and the development of age-related neurodegenerative diseases. Malfunction of microglia, the brain-resident immune cells, was suggested to play a critical role in neuroinflammation, but the mechanisms underlying this malfunctional phenotype remain unclear. Specifically, the age-related changes in microglial Ca2+ signaling, known to be linked to its executive functions, are not well understood. Here, using in vivo two-photon imaging, we characterize intracellular Ca2+ signaling and process extension of cortical microglia in young adult (2⁻4-month-old), middle-aged (9⁻11-month-old), and old (18⁻21-month-old) mice. Our data revealed a complex and nonlinear dependency of the properties of intracellular Ca2+ signals on an animal's age. While the fraction of cells displaying spontaneous Ca2+ transients progressively increased with age, the frequencies and durations of the spontaneous Ca2+ transients followed a bell-shaped relationship, with the most frequent and largest Ca2+ transients seen in middle-aged mice. Moreover, in old mice microglial processes extending toward an ATP source moved faster but in a more disorganized manner, compared to young adult mice. Altogether, these findings identify two distinct phenotypes of aging microglia: a reactive phenotype, abundantly present in middle-aged animals, and a dysfunctional/senescent phenotype ubiquitous in old mice.


Assuntos
Encéfalo/metabolismo , Microglia/metabolismo , Envelhecimento/fisiologia , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Cognição/fisiologia , Feminino , Envelhecimento Saudável/fisiologia , Masculino , Camundongos , Microglia/fisiologia
18.
Nat Methods ; 11(2): 175-82, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24390440

RESUMO

The quality of genetically encoded calcium indicators (GECIs) has improved dramatically in recent years, but high-performing ratiometric indicators are still rare. Here we describe a series of fluorescence resonance energy transfer (FRET)-based calcium biosensors with a reduced number of calcium binding sites per sensor. These 'Twitch' sensors are based on the C-terminal domain of Opsanus troponin C. Their FRET responses were optimized by a large-scale functional screen in bacterial colonies, refined by a secondary screen in rat hippocampal neuron cultures. We tested the in vivo performance of the most sensitive variants in the brain and lymph nodes of mice. The sensitivity of the Twitch sensors matched that of synthetic calcium dyes and allowed visualization of tonic action potential firing in neurons and high resolution functional tracking of T lymphocytes. Given their ratiometric readout, their brightness, large dynamic range and linear response properties, Twitch sensors represent versatile tools for neuroscience and immunology.


Assuntos
Técnicas Biossensoriais/métodos , Cálcio/metabolismo , Hipocampo/metabolismo , Proteínas Luminescentes/metabolismo , Neurônios/metabolismo , Linfócitos T/metabolismo , Troponina C/metabolismo , Animais , Animais Recém-Nascidos , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Células HEK293 , Humanos , Processamento de Imagem Assistida por Computador , Ativação Linfocitária , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Dados de Sequência Molecular , Neurônios/citologia , Ratos , Linfócitos T/citologia
20.
Proc Natl Acad Sci U S A ; 109(44): 18150-5, 2012 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-23071306

RESUMO

Under most physiological circumstances, monocytes are excluded from parenchymal CNS tissues. When widespread monocyte entry occurs, their numbers decrease shortly after engraftment in the presence of microglia. However, some disease processes lead to focal and selective loss, or dysfunction, of microglia, and microglial senescence typifies the aged brain. In this regard, the long-term engraftment of monocytes in the microglia-depleted brain remains unknown. Here, we report a model in which a niche for myeloid cells was created through microglia depletion. We show that microglia-depleted brain regions of CD11b-HSVTK transgenic mice are repopulated with new Iba-1-positive cells within 2 wk. The engrafted cells expressed high levels of CD45 and CCR2 and appeared in a wave-like pattern frequently associated with blood vessels, suggesting the engrafted cells were peripheral monocytes. Although two times more numerous and morphologically distinct from resident microglia up to 27 wk after initial engraftment, the overall distribution of the engrafted cells was remarkably similar to that of microglia. Two-photon in vivo imaging revealed that the engrafted myeloid cells extended their processes toward an ATP source and displayed intracellular calcium transients. Moreover, the engrafted cells migrated toward areas of kainic acid-induced neuronal death. These data provide evidence that circulating monocytes have the potential to occupy the adult CNS myeloid niche normally inhabited by microglia and identify a strong homeostatic drive to maintain the myeloid component in the mature brain.


Assuntos
Sistema Nervoso Central/citologia , Homeostase , Microglia/citologia , Trifosfato de Adenosina/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Camundongos , Microglia/metabolismo , Timidina Quinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA