Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Europace ; 22(2): 320-329, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31845994

RESUMO

AIMS: Desmoglein-2 (DSG2) mutations, which encode a heart-specific cadherin crucial for desmosomal adhesion, are frequent in arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D). DSG2 mutations have been associated with higher risk of biventricular involvement. Among DSG2 mutations, mutations of the inhibitory propeptide consensus cleavage-site (Arg-X-Arg/Lys-Arg), are particularly frequent. In the present work, we explored the functional consequences of DSG2 propeptide cleavage site mutations p.Arg49His, p.Arg46Trp, and p.Arg46Gln on localization, adhesive properties, and desmosome incorporation of DSG2. METHODS AND RESULTS: We studied the expression of mutant-DSG2 in human heart and in epithelial and cardiac cellular models expressing wild-type or mutant (p.Arg49His, p.Arg46Trp, and p.Arg46Gln) proDSG2-GFP fusion proteins. The consequences of the p.Arg46Trp mutation on DSG2 adhesiveness were studied by surface plasmon resonance. Incorporation of mutant p.Arg46Trp DSG2 into desmosomes was studied under low-calcium culture conditions and cyclic mechanical stress. We demonstrated in human heart and cellular models that all three mutations prevented N-terminal propeptide cleavage, but did not modify intercellular junction targeting. Surface plasmon resonance experiments showed a propeptide-dependent loss of interaction between the cadherin N-terminal extracellular 1 (EC1) domains. Additionally, proDSG2 mutant proteins were abnormally incorporated into desmosomes under low-calcium culture conditions or following mechanical stress. This was accompanied by an epidermal growth factor receptor-dependent internalization of proDSG2, suggesting increased turnover of unprocessed proDSG2. CONCLUSION: Our results strongly suggest weakened desmosomal adhesiveness due to abnormal incorporation of uncleaved mutant proDSG2 in cellular stress conditions. These results provide new insights into desmosomal cadherin regulation and ARVC/D pathophysiology, in particular, the potential role of mechanical stress on desmosomal dysfunction.


Assuntos
Displasia Arritmogênica Ventricular Direita , Desmogleína 2 , Displasia Arritmogênica Ventricular Direita/genética , Desmogleína 2/genética , Coração , Humanos , Mutação
2.
Eur Heart J ; 35(16): 1069-77, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23853074

RESUMO

AIMS: Dilated cardiomyopathy (DCM) is one of the leading causes for cardiac transplantations and accounts for up to one-third of all heart failure cases. Since extrinsic and monogenic causes explain only a fraction of all cases, common genetic variants are suspected to contribute to the pathogenesis of DCM, its age of onset, and clinical progression. By a large-scale case-control genome-wide association study we aimed here to identify novel genetic risk loci for DCM. METHODS AND RESULTS: Applying a three-staged study design, we analysed more than 4100 DCM cases and 7600 controls. We identified and successfully replicated multiple single nucleotide polymorphism on chromosome 6p21. In the combined analysis, the most significant association signal was obtained for rs9262636 (P = 4.90 × 10(-9)) located in HCG22, which could again be replicated in an independent cohort. Taking advantage of expression quantitative trait loci (eQTL) as molecular phenotypes, we identified rs9262636 as an eQTL for several closely located genes encoding class I and class II major histocompatibility complex heavy chain receptors. CONCLUSION: The present study reveals a novel genetic susceptibility locus that clearly underlines the role of genetically driven, inflammatory processes in the pathogenesis of idiopathic DCM.


Assuntos
Cardiomiopatia Dilatada/genética , Cromossomos Humanos Par 6/genética , Antígenos HLA-C/genética , Polimorfismo de Nucleotídeo Único/genética , Cardiomiopatia Dilatada/fisiopatologia , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Volume Sistólico/fisiologia
3.
Europace ; 15(10): 1522-5, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23858024

RESUMO

AIMS: Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is an inherited cardiomyopathy characterized by fibro-fatty replacement of the right ventricle and ventricular arrhythmias. The major disease-causing genes encode cardiac desmosomal components but are involved in only ∼50% of patients. To identify the missing genetic determinants, we used a candidate gene approach, focusing on the 3'-untranslated region (UTR) of the main ARVC/D gene PKP2 and on additional genes involved in desmosomal structure or function. METHODS AND RESULTS: We screened a population of 64 ARVC/D probands with no identified mutations in any of the five known desmosomal genes (PKP2, DSG2, DSP, DSC2, and JUP). No putative mutation was identified in the 3'-UTR of PKP2 or in PNN, CTNNA3, CAV1, or PLN coding sequences. In a single proband, we identified two rare heterozygous missense variants affecting evolutionary conserved residues: c.175G>A (p.Gly59Arg) in PERP and c.1811A>G (p.Asp604Gly) in PKP4 (minor allele frequency <0.5% in control population). CONCLUSION: Our study suggests that mutations in the candidate genes studied and regulation of PKP2 mRNA via 3'-UTR dependent mechanisms are unlikely to be major causes of ARVC/D in the studied population. Additional studies are needed to investigate the putative effects of rare PKP4 and PERP variants in this disease.


Assuntos
Displasia Arritmogênica Ventricular Direita/genética , Testes Genéticos , Sequência de Aminoácidos , Análise Mutacional de DNA , Frequência do Gene , Genes Supressores de Tumor , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos/métodos , Heterozigoto , Humanos , Proteínas de Membrana/genética , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Placofilinas/genética
4.
Eur Heart J ; 32(9): 1065-76, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21459883

RESUMO

AIMS: Dilated cardiomyopathy (DCM) is a major cause of heart failure with a high familial recurrence risk. So far, the genetics of DCM remains largely unresolved. We conducted the first genome-wide association study (GWAS) to identify loci contributing to sporadic DCM. METHODS AND RESULTS: One thousand one hundred and seventy-nine DCM patients and 1108 controls contributed to the discovery phase. Pools of DNA stratified on disease status, population, age, and gender were constituted and used for testing association of DCM with 517 382 single nucleotide polymorphisms (SNPs). Three DCM-associated SNPs were confirmed by individual genotyping (P < 5.0 10(-7)), and two of them, rs10927875 and rs2234962, were replicated in independent samples (1165 DCM patients and 1302 controls), with P-values of 0.002 and 0.009, respectively. rs10927875 maps to a region on chromosome 1p36.13 which encompasses several genes among which HSPB7 has been formerly suggested to be implicated in DCM. The second identified locus involves rs2234962, a non-synonymous SNP (c.T757C, p. C151R) located within the sequence of BAG3 on chromosome 10q26. To assess whether coding mutations of BAG3 might cause monogenic forms of the disease, we sequenced BAG3 exons in 168 independent index cases diagnosed with familial DCM and identified four truncating and two missense mutations. Each mutation was heterozygous, present in all genotyped relatives affected by the disease and absent in a control group of 347 healthy individuals, strongly suggesting that these mutations are causing the disease. CONCLUSION: This GWAS identified two loci involved in sporadic DCM, one of them probably implicates BAG3. Our results show that rare mutations in BAG3 contribute to monogenic forms of the disease, while common variant(s) in the same gene are implicated in sporadic DCM.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Cardiomiopatia Dilatada/genética , Cromossomos Humanos Par 10/genética , Cromossomos Humanos Par 1/genética , Loci Gênicos/genética , Insuficiência Cardíaca/genética , Adulto , Proteínas Reguladoras de Apoptose , Canais de Cloreto/genética , Feminino , Estudo de Associação Genômica Ampla , Proteínas de Choque Térmico HSP27/genética , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto/genética , Polimorfismo de Nucleotídeo Único/genética
5.
Hum Mutat ; 28(1): 33-40, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16972228

RESUMO

Aldosterone plays a key role in electrolyte balance and blood pressure regulation. Type 1 pseudohypoaldosteronism (PHA1) is a primary form of mineralocorticoid resistance characterized in the newborn by salt wasting, hyperkalemia, and failure to thrive. Inactivating mutations of the mineralocorticoid receptor (MR; NR3C2) are responsible for autosomal dominant and some sporadic cases of PHA1. The question as to whether other genes may be involved in the disease is of major importance because of the potential life-threatening character of the disease, the potential cardiovascular effects of compensatory aldosterone excess, and the role of the mineralocorticoid system in human hypertension. We present the first comprehensive study seeking nucleotide substitutions in coding regions, intron-exon junctions, and untranslated exons, as well as for large deletions. A total of 22 MR gene abnormalities were found in 33 patients. We demonstrate that MR mutations are extremely frequent in PHA1 patients classified according to aldosterone and potassium levels and give indications for accurate clinical and biological investigation. In our study the possibility of a genocopy exists in three PHA1 kindreds. The other patients without MR mutations might have different diseases resembling to PHA1 in the neonatal period, which could be identified by extensive clinical and functional exploration.


Assuntos
Pseudo-Hipoaldosteronismo/genética , Receptores de Mineralocorticoides/genética , Análise Mutacional de DNA , Feminino , Deleção de Genes , Humanos , Imageamento Tridimensional , Recém-Nascido , Rim/patologia , Masculino , Modelos Moleculares , Proteínas Mutantes/química , Mutação , Pseudo-Hipoaldosteronismo/patologia , Receptores de Mineralocorticoides/química
6.
Diabetes Care ; 40(9): 1181-1186, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28724718

RESUMO

OBJECTIVE: To evaluate the compliance with self-monitoring of blood glucose (SMBG) and the reliability of diabetes logbooks in women with gestational diabetes mellitus (GDM), as well as the associated determinants and outcomes. RESEARCH DESIGN AND METHODS: We prospectively selected French-speaking women with newly diagnosed GDM who had been referred to our diabetes management program and understood SMBG principles. At the next follow-up visit, we collected SMBG results from glucose meters and logbooks. We analyzed pregnancy outcomes. RESULTS: Data were analyzed over 13 ± 3 days in 91 women. Only 61.5% had performed ≥80% of the required tests. Poor compliance was associated with a family history of diabetes, social deprivation, and non-European origin. The average time between pre- and postprandial tests was 141 ± 20 min, with 46.5% of women performing ≥80% of postprandial measurements 100-140 min after meals. Inadequate timing was associated with ethnicity and higher HbA1c at baseline. A total of 23.1% of women had <90% matched values in diary and meter memory, and a poor concordance was associated with a family history of diabetes. Poor adherence was associated with more preeclampsia (12.2 vs. 1.9%, P = 0.049), and inadequate postprandial test timing with a higher HbA1c at delivery (5.3 ± 0.4 vs. 5.0 ± 0.3% [34 ± 2 vs. 31 ± 2 mmol/mol], P < 0.01), despite more frequent insulin therapy. CONCLUSIONS: Although women with GDM are considered to be highly motivated, SMBG adherence and reliability are of concern and may be associated with poor gestational prognosis, suggesting that caregivers should systematically check the glucose meter memory to improve GDM management.


Assuntos
Automonitorização da Glicemia , Glicemia/metabolismo , Diabetes Gestacional/sangue , Cooperação do Paciente , Resultado da Gravidez , Adulto , Índice de Massa Corporal , Feminino , Seguimentos , Hemoglobinas Glicadas/metabolismo , Humanos , Insulina/sangue , Insulina/uso terapêutico , Período Pós-Prandial , Gravidez , Estudos Prospectivos , Reprodutibilidade dos Testes
7.
PLoS One ; 8(9): e75082, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086444

RESUMO

AIMS: Arrhythmogenic right ventricular Dysplasia/cardiomyopathy (ARVD/C) is an autosomal dominant inherited cardiomyopathy associated with ventricular arrhythmia, heart failure and sudden death. Genetic studies have demonstrated the central role of desmosomal proteins in this disease, where 50% of patients harbor a mutation in a desmosmal gene. However, clinical diagnosis of the disease remains difficult and molecular mechanisms appears heterogeneous and poorly understood. The aim of this study was to characterize the expression profile of desmosomal proteins in explanted ARVD/C heart samples, in order to identify common features of the disease. METHODS AND RESULTS: We examined plakophilin-2, desmoglein-2, desmocollin-2, plakoglobin and ß-catenin protein expression levels from seven independent ARVD/C heart samples compared to two ischemic, five dilated cardiomyopathy and one healthy heart sample as controls. Ventricular and septum sections were examined by immunoblot analysis of total heart protein extracts and by immunostaining. Immunoblots indicated significant decreases in desmoglein-2 and desmocollin-2, independent of any known underlying mutations, whereas immune-histochemical analysis showed normal localization of all desmosomal proteins. Quantitative RT-PCR revealed normal DSG2 and DSC2 mRNA transcript levels, suggesting increased protein turn-over rather than transcriptional down regulation. CONCLUSION: Reduced cardiac desmoglein-2 and desmocollin-2 levels appear to be specifically associated with ARVD/C, independent of underlying mutations. These findings highlight a key role of desmosomal cadherins in the pathophysiology of ARVD/C. Whether these reductions could be considered as specific markers for ARVD/C requires replication analysis.


Assuntos
Displasia Arritmogênica Ventricular Direita/metabolismo , Biomarcadores/metabolismo , Desmocolinas/metabolismo , Desmogleína 2/metabolismo , Caderinas de Desmossomos/metabolismo , Perfilação da Expressão Gênica/métodos , Displasia Arritmogênica Ventricular Direita/diagnóstico , Primers do DNA/genética , Desmoplaquinas/metabolismo , Imunofluorescência , Humanos , Immunoblotting , Microscopia Eletrônica , Placofilinas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Estatísticas não Paramétricas , beta Catenina/metabolismo , gama Catenina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA