Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Lipid Res ; 64(8): 100392, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37211250

RESUMO

Bile acids are detergents derived from cholesterol that function to solubilize dietary lipids, remove cholesterol from the body, and act as nutrient signaling molecules in numerous tissues with functions in the liver and gut being the best understood. Studies in the early 20th century established the structures of bile acids, and by mid-century, the application of gnotobiology to bile acids allowed differentiation of host-derived "primary" bile acids from "secondary" bile acids generated by host-associated microbiota. In 1960, radiolabeling studies in rodent models led to determination of the stereochemistry of the bile acid 7-dehydration reaction. A two-step mechanism was proposed, which we have termed the Samuelsson-Bergström model, to explain the formation of deoxycholic acid. Subsequent studies with humans, rodents, and cell extracts of Clostridium scindens VPI 12708 led to the realization that bile acid 7-dehydroxylation is a result of a multi-step, bifurcating pathway that we have named the Hylemon-Björkhem pathway. Due to the importance of hydrophobic secondary bile acids and the increasing measurement of microbial bai genes encoding the enzymes that produce them in stool metagenome studies, it is important to understand their origin.


Assuntos
Ácidos e Sais Biliares , Clostridium , Humanos , Ácidos e Sais Biliares/metabolismo , Fezes
2.
Nutr Cancer ; 75(3): 876-889, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36625531

RESUMO

Obesity is considered an independent risk factor for colorectal cancer (CRC). Altered nutrient metabolism, particularly changes to digestion and intestinal absorption, may play an important role in the development of CRC. Iron can promote the formation of tissue-damaging and immune-modulating reactive oxygen species. We conducted a crossover, controlled feeding study to examine the effect of three, 3-week diets varying in iron and saturated fat content on the colonic milieu and systemic markers among older females with obesity. Anthropometrics, fasting venous blood and stool were collected before and after each diet. There was a minimum 3-week washout period between diets. Eighteen participants consumed the three diets (72% Black; mean age 60.4 years; mean body mass index 35.7 kg/m2). Results showed no effect of the diets on intestinal inflammation (fecal calprotectin) or circulating iron, inflammation, and metabolic markers. Pairwise comparisons revealed less community diversity between samples (beta diversity, calculated from 16S rRNA amplicon sequences) among participants when consuming a diet low in iron and high in saturated fat vs. when consuming a diet high in iron and saturated fat. More studies are needed to investigate if dietary iron represents a salient target for CRC prevention among individuals with obesity.


Assuntos
Dieta , Microbioma Gastrointestinal , Intestinos , Feminino , Humanos , Pessoa de Meia-Idade , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos , Inflamação/etiologia , Ferro , Obesidade/complicações , Obesidade/epidemiologia , Obesidade/microbiologia , RNA Ribossômico 16S/genética , Intestinos/microbiologia , Intestinos/fisiologia
3.
BMC Microbiol ; 21(1): 24, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33430766

RESUMO

BACKGROUND: Berberine (BBR) is a plant-based nutraceutical that has been used for millennia to treat diarrheal infections and in contemporary medicine to improve patient lipid profiles. Reduction in lipids, particularly cholesterol, is achieved partly through up-regulation of bile acid synthesis and excretion into the gastrointestinal tract (GI). The efficacy of BBR is also thought to be dependent on structural and functional alterations of the gut microbiome. However, knowledge of the effects of BBR on gut microbiome communities is currently lacking. Distinguishing indirect effects of BBR on bacteria through altered bile acid profiles is particularly important in understanding how dietary nutraceuticals alter the microbiome. RESULTS: Germfree mice were colonized with a defined minimal gut bacterial consortium capable of functional bile acid metabolism (Bacteroides vulgatus, Bacteroides uniformis, Parabacteroides distasonis, Bilophila wadsworthia, Clostridium hylemonae, Clostridium hiranonis, Blautia producta; B4PC2). Multi-omics (bile acid metabolomics, 16S rDNA sequencing, cecal metatranscriptomics) were performed in order to provide a simple in vivo model from which to identify network-based correlations between bile acids and bacterial transcripts in the presence and absence of dietary BBR. Significant alterations in network topology and connectivity in function were observed, despite similarity in gut microbial alpha diversity (P = 0.30) and beta-diversity (P = 0.123) between control and BBR treatment. BBR increased cecal bile acid concentrations, (P < 0.05), most notably deoxycholic acid (DCA) (P < 0.001). Overall, analysis of transcriptomes and correlation networks indicates both bacterial species-specific responses to BBR, as well as functional commonalities among species, such as up-regulation of Na+/H+ antiporter, cell wall synthesis/repair, carbohydrate metabolism and amino acid metabolism. Bile acid concentrations in the GI tract increased significantly during BBR treatment and developed extensive correlation networks with expressed genes in the B4PC2 community. CONCLUSIONS: This work has important implications for interpreting the effects of BBR on structure and function of the complex gut microbiome, which may lead to targeted pharmaceutical interventions aimed to achieve the positive physiological effects previously observed with BBR supplementation.


Assuntos
Bactérias/classificação , Proteínas de Bactérias/genética , Berberina/administração & dosagem , Ácidos e Sais Biliares/metabolismo , RNA Ribossômico 16S/genética , Animais , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/isolamento & purificação , Berberina/farmacologia , DNA Bacteriano/genética , DNA Ribossômico/genética , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Masculino , Metabolômica , Camundongos , Análise de Sequência de RNA , Especificidade da Espécie
4.
J Neuroinflammation ; 17(1): 346, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33208156

RESUMO

BACKGROUND: Glioblastoma is the most common and deadly form of primary brain cancer, accounting for more than 13,000 new diagnoses annually in the USA alone. Microglia are the innate immune cells within the central nervous system, acting as a front-line defense against injuries and inflammation via a process that involves transformation from a quiescent to an activated phenotype. Crosstalk between GBM cells and microglia represents an important axis to consider in the development of tissue engineering platforms to examine pathophysiological processes underlying GBM progression and therapy. METHODS: This work used a brain-mimetic hydrogel system to study patient-derived glioblastoma specimens and their interactions with microglia. Here, glioblastoma cells were either cultured alone in 3D hydrogels or in co-culture with microglia in a manner that allowed secretome-based signaling but prevented direct GBM-microglia contact. Patterns of GBM cell invasion were quantified using a three-dimensional spheroid assay. Secretome and transcriptome (via RNAseq) were used to profile the consequences of GBM-microglia interactions. RESULTS: Microglia displayed an activated phenotype as a result of GBM crosstalk. Three-dimensional migration patterns of patient-derived glioblastoma cells showed invasion was significantly decreased in response to microglia paracrine signaling. Potential molecular mechanisms underlying with this phenotype were identified from bioinformatic analysis of secretome and RNAseq data. CONCLUSION: The data demonstrate a tissue engineered hydrogel platform can be used to investigate crosstalk between immune cells of the tumor microenvironment related to GBM progression. Such multi-dimensional models may provide valuable insight to inform therapeutic innovations to improve GBM treatment.


Assuntos
Neoplasias Encefálicas/metabolismo , Gelatina/administração & dosagem , Glioblastoma/metabolismo , Hidrogéis/administração & dosagem , Microglia/metabolismo , Microambiente Tumoral/fisiologia , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular , Técnicas de Cocultura , Feminino , Glioblastoma/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Microglia/efeitos dos fármacos , Invasividade Neoplásica/patologia , Engenharia Tecidual/métodos , Células Tumorais Cultivadas , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
5.
Gut ; 68(9): 1624-1632, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31092590

RESUMO

OBJECTIVE: In this consensus statement, an international panel of experts deliver their opinions on key questions regarding the contribution of the human microbiome to carcinogenesis. DESIGN: International experts in oncology and/or microbiome research were approached by personal communication to form a panel. A structured, iterative, methodology based around a 1-day roundtable discussion was employed to derive expert consensus on key questions in microbiome-oncology research. RESULTS: Some 18 experts convened for the roundtable discussion and five key questions were identified regarding: (1) the relevance of dysbiosis/an altered gut microbiome to carcinogenesis; (2) potential mechanisms of microbiota-induced carcinogenesis; (3) conceptual frameworks describing how the human microbiome may drive carcinogenesis; (4) causation versus association; and (5) future directions for research in the field.The panel considered that, despite mechanistic and supporting evidence from animal and human studies, there is currently no direct evidence that the human commensal microbiome is a key determinant in the aetiopathogenesis of cancer. The panel cited the lack of large longitudinal, cohort studies as a principal deciding factor and agreed that this should be a future research priority. However, while acknowledging gaps in the evidence, expert opinion was that the microbiome, alongside environmental factors and an epigenetically/genetically vulnerable host, represents one apex of a tripartite, multidirectional interactome that drives carcinogenesis. CONCLUSION: Data from longitudinal cohort studies are needed to confirm the role of the human microbiome as a key driver in the aetiopathogenesis of cancer.


Assuntos
Carcinogênese , Microbiota , Neoplasias/microbiologia , Animais , Pesquisa Biomédica/métodos , Pesquisa Biomédica/tendências , Carcinogênese/genética , Carcinogênese/imunologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/microbiologia , Dano ao DNA , Disbiose/complicações , Disbiose/imunologia , Disbiose/microbiologia , Microbioma Gastrointestinal , Humanos , Inflamação/microbiologia , Neoplasias/genética , Neoplasias/imunologia
6.
Gut ; 66(11): 1983-1994, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28153960

RESUMO

OBJECTIVE: Colorectal cancer (CRC) incidence is higher in African Americans (AAs) compared with non-Hispanic whites (NHWs). A diet high in animal protein and fat is an environmental risk factor for CRC development. The intestinal microbiota is postulated to modulate the effects of diet in promoting or preventing CRC. Hydrogen sulfide, produced by autochthonous sulfidogenic bacteria, triggers proinflammatory pathways and hyperproliferation, and is genotoxic. We hypothesised that sulfidogenic bacterial abundance in colonic mucosa may be an environmental CRC risk factor that distinguishes AA and NHW. DESIGN: Colonic biopsies from uninvolved or healthy mucosa from CRC cases and tumour-free controls were collected prospectively from five medical centres in Chicago for association studies. Sulfidogenic bacterial abundance in uninvolved colonic mucosa of AA and NHW CRC cases was compared with normal mucosa of AA and NHW controls. In addition, 16S rDNA sequencing was performed in AA cases and controls. Correlations were examined among bacterial targets, race, disease status and dietary intake. RESULTS: AAs harboured a greater abundance of sulfidogenic bacteria compared with NHWs regardless of disease status. Bilophila wadsworthia-specific dsrA was more abundant in AA cases than controls. Linear discriminant analysis of 16S rRNA gene sequences revealed five sulfidogenic genera that were more abundant in AA cases. Fat and protein intake and daily servings of meat were significantly higher in AAs compared with NHWs, and multiple dietary components correlated with a higher abundance of sulfidogenic bacteria. CONCLUSIONS: These results implicate sulfidogenic bacteria as a potential environmental risk factor contributing to CRC development in AAs.


Assuntos
Adenocarcinoma/microbiologia , Negro ou Afro-Americano , Colo/microbiologia , Neoplasias Colorretais/microbiologia , Mucosa Intestinal/microbiologia , Bactérias Redutoras de Enxofre/isolamento & purificação , População Branca , Adenocarcinoma/etnologia , Adenocarcinoma/etiologia , Adulto , Idoso , Estudos de Casos e Controles , Chicago , Neoplasias Colorretais/etnologia , Neoplasias Colorretais/etiologia , Dieta/efeitos adversos , Gorduras na Dieta/efeitos adversos , Proteínas Alimentares/efeitos adversos , Feminino , Disparidades nos Níveis de Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Risco
7.
Gastroenterology ; 150(2): 367-79.e1, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26460205

RESUMO

BACKGROUND & AIMS: In fecal samples from patients with chronic constipation, the microbiota differs from that of healthy subjects. However, the profiles of fecal microbiota only partially replicate those of the mucosal microbiota. It is not clear whether these differences are caused by variations in diet or colonic transit, or are associated with methane production (measured by breath tests). We compared the colonic mucosal and fecal microbiota in patients with chronic constipation and in healthy subjects to investigate the relationships between microbiota and other parameters. METHODS: Sigmoid colonic mucosal and fecal microbiota samples were collected from 25 healthy women (controls) and 25 women with chronic constipation and evaluated by 16S ribosomal RNA gene sequencing (average, 49,186 reads/sample). We assessed associations between microbiota (overall composition and operational taxonomic units) and demographic variables, diet, constipation status, colonic transit, and methane production (measured in breath samples after oral lactulose intake). RESULTS: Fourteen patients with chronic constipation had slow colonic transit. The profile of the colonic mucosal microbiota differed between constipated patients and controls (P < .05). The overall composition of the colonic mucosal microbiota was associated with constipation, independent of colonic transit (P < .05), and discriminated between patients with constipation and controls with 94% accuracy. Genera from Bacteroidetes were more abundant in the colonic mucosal microbiota of patients with constipation. The profile of the fecal microbiota was associated with colonic transit before adjusting for constipation, age, body mass index, and diet; genera from Firmicutes (Faecalibacterium, Lactococcus, and Roseburia) correlated with faster colonic transit. Methane production was associated with the composition of the fecal microbiota, but not with constipation or colonic transit. CONCLUSIONS: After adjusting for diet and colonic transit, the profile of the microbiota in the colonic mucosa could discriminate patients with constipation from healthy individuals. The profile of the fecal microbiota was associated with colonic transit and methane production (measured in breath), but not constipation.


Assuntos
Bactérias/metabolismo , Colo/microbiologia , Constipação Intestinal/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal , Trânsito Gastrointestinal , Mucosa Intestinal/microbiologia , Metano/metabolismo , Adulto , Algoritmos , Bactérias/classificação , Bactérias/genética , Testes Respiratórios , Estudos de Casos e Controles , Doença Crônica , Colo/fisiopatologia , Constipação Intestinal/diagnóstico , Constipação Intestinal/fisiopatologia , Feminino , Humanos , Mucosa Intestinal/fisiopatologia , Pessoa de Meia-Idade , Análise Multivariada , Dinâmica não Linear , Filogenia , Ribotipagem
8.
Biochem Biophys Res Commun ; 483(1): 680-686, 2017 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-27986568

RESUMO

Deoxynyboquinone (DNQ), a potent novel quinone-based antineoplastic agent, selectively kills solid cancers with overexpressed cytosolic NAD(P)H:quinone oxidoreductase-1 (NQO1) via excessive ROS production. A genetically encoded redox-sensitive probe was used to monitor intraorganellar glutathione redox potentials (EGSH) as a direct indicator of cellular oxidative stress following chemotherapeutic administration. Beta-lapachone (ß-lap) and DNQ-induced spatiotemporal redox responses were monitored in human lung A549 and pancreatic MIA-PaCa-2 adenocarcinoma cells incubated with or without dicumarol and ES936, potent NQO1 inhibitors. Immediate oxidation of EGSH in both the cytosol and mitochondrial matrix was observed in response to DNQ and ß-lap. The DNQ-induced cytosolic oxidation was fully prevented with NQO1 inhibition, whereas mitochondrial oxidation in A549 was NQO1-independent in contrast to MIA-PaCa-2 cells. However, at pharmacologic concentrations of ß-lap both quinone-based substrates directly oxidized the redox probe, a possible sign of off-target reactivity with cellular thiols. Together, these data provide new evidence that DNQ's direct and discerning NQO1 substrate specificity underlies its pharmacologic potency, while ß-lap elicits off-target responses at its effective doses.


Assuntos
Antineoplásicos/farmacologia , Glutationa/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Quinonas/farmacologia , Técnicas Biossensoriais , Linhagem Celular Tumoral , Citosol/efeitos dos fármacos , Citosol/metabolismo , Dicumarol/farmacologia , Corantes Fluorescentes/análise , Glutarredoxinas/análise , Glutarredoxinas/genética , Glutationa/análise , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Humanos , Indolquinonas/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Imagem Molecular , Sondas Moleculares/genética , Terapia de Alvo Molecular , NAD(P)H Desidrogenase (Quinona)/antagonistas & inibidores , Naftoquinonas/metabolismo , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Especificidade por Substrato
9.
Immunol Cell Biol ; 94(2): 158-63, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26626721

RESUMO

There is robust evidence that habitual physical activity is anti-inflammatory and protective against developing chronic inflammatory disease. Much less is known about the effects of habitual moderate exercise in the gut, the compartment that has the greatest immunological responsibility and interactions with the intestinal microbiota. The link between the two has become evident, as recent studies have linked intestinal dysbiosis, or the disproportionate balance of beneficial to pathogenic microbes, with increased inflammatory disease susceptibility. Limited animal and human research findings imply that exercise may have a beneficial role in preventing and ameliorating such diseases by having an effect on gut immune function and, recently, microbiome characteristics. Emerging data from our laboratory show that different forms of exercise training differentially impact the severity of intestinal inflammation during an inflammatory insult (for example, ulcerative colitis) and may be jointly related to gut immune cell homeostasis and microbiota-immune interactions. The evidence we review and present will provide data in support of rigorous investigations concerning the effects of habitual exercise on gut health and disease.


Assuntos
Colite/imunologia , Colo/imunologia , Exercício Físico/fisiologia , Intestinos/imunologia , Microbiota/imunologia , Animais , Colite/terapia , Colo/microbiologia , Terapia por Exercício , Homeostase , Humanos , Imunidade nas Mucosas/imunologia , Intestinos/microbiologia
10.
Am J Physiol Cell Physiol ; 309(2): C81-91, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25994788

RESUMO

Excessive oxidation is widely accepted as a precursor to deleterious cellular function. On the other hand, an awareness of the role of reductive stress as a similar pathological insult is emerging. Here we report early dynamic changes in compartmentalized glutathione (GSH) redox potentials in living cells in response to exogenously supplied thiol-based antioxidants. Noninvasive monitoring of intracellular thiol-disulfide exchange via a genetically encoded biosensor targeted to cytosol and mitochondria revealed unexpectedly rapid oxidation of the mitochondrial matrix in response to GSH ethyl ester or N-acetyl-l-cysteine. Oxidation of the probe occurred within seconds in a concentration-dependent manner and was attenuated with the membrane-permeable ROS scavenger tiron. In contrast, the cytosolic sensor did not respond to similar treatments. Surprisingly, the immediate mitochondrial oxidation was not abrogated by depolarization of mitochondrial membrane potential or inhibition of mitochondrial GSH uptake. After detection of elevated levels of mitochondrial ROS, we systematically inhibited multisubunit protein complexes of the mitochondrial respiratory chain and determined that respiratory complex III is a downstream target of thiol-based compounds. Disabling complex III with myxothiazol completely blocked matrix oxidation induced with GSH ethyl ester or N-acetyl-l-cysteine. Our findings provide new evidence of a functional link between exogenous thiol-containing antioxidants and mitochondrial respiration.


Assuntos
Antioxidantes/farmacologia , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Compostos de Sulfidrila/farmacologia , Animais , Técnicas Biossensoriais , Células CHO , Cricetulus , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Glutationa/metabolismo , Células HCT116 , Células HEK293 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Suínos , Fatores de Tempo , Transfecção
11.
Mol Ecol ; 24(10): 2551-65, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25846719

RESUMO

The metabolic activities of gut microbes significantly influence host physiology; thus, characterizing the forces that modulate this micro-ecosystem is key to understanding mammalian biology and fitness. To investigate the gut microbiome of wild primates and determine how these microbial communities respond to the host's external environment, we characterized faecal bacterial communities and, for the first time, gut metabolomes of four wild lowland gorilla groups in the Dzanga-Sangha Protected Areas, Central African Republic. Results show that geographical range may be an important modulator of the gut microbiomes and metabolomes of these gorilla groups. Distinctions seemed to relate to feeding behaviour, implying energy harvest through increased fruit consumption or fermentation of highly fibrous foods. These observations were supported by differential abundance of metabolites and bacterial taxa associated with the metabolism of cellulose, phenolics, organic acids, simple sugars, lipids and sterols between gorillas occupying different geographical ranges. Additionally, the gut microbiomes of a gorilla group under increased anthropogenic pressure could always be distinguished from that of all other groups. By characterizing the interplay between environment, behaviour, diet and symbiotic gut microbes, we present an alternative perspective on primate ecology and on the forces that shape the gut microbiomes of wild primates from an evolutionary context.


Assuntos
Fezes/microbiologia , Gorilla gorilla/microbiologia , Microbiota , Animais , República Centro-Africana , DNA Bacteriano/genética , Dieta/veterinária , Ácidos Graxos/análise , Fezes/química , Comportamento Alimentar , Geografia , Metabolômica
12.
J Nutr ; 144(8): 1181-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24919690

RESUMO

Recent studies have highlighted the relation between high-fat (HF) diets, the gut microbiota, and inflammation. However, the role of sulfidogenic bacteria in mediating these effects has been explored only recently. Therefore, we tested the hypothesis that an HF diet rich in saturated fat stimulates sulfidogenic bacteria and that these increases correlate with intestinal and systemic inflammatory responses. Forty C57BL/6J male mice were fed a low-fat (LF; 10% of energy) or an HF lard-based (60% of energy) diet for 6 or 20 wk. Mucosa samples were collected from the ileum, cecum, and colon and used for measuring 16S ribosomal RNA and functional genes of sulfidogenic bacteria. Matching intestinal samples and visceral and subcutaneous white adipose tissue (WAT) depots were used to measure mRNA abundance for inflammatory genes. Mice fed the HF diet had greater (P < 0.05) abundance of 3 types of sulfidogenic bacteria, primarily in colonic mucosa, compared with LF-fed mice at week 20. Although HF feeding did not increase intestinal inflammation at week 6, ileal markers of macrophage infiltration and inflammation were upregulated (P < 0.05) 1- to 6-fold at week 20. HF feeding impaired the localization of the tight junction protein zonula occludens 1 at the apical area of the ileal epithelium at weeks 6 and 20. Mice fed the HF diet had 1- to 100-fold greater (P < 0.05) mRNA levels of markers of macrophage infiltration in visceral and subcutaneous WAT at week 20, but not at week 6, compared with LF-fed mice. These results provide evidence that chronic, but not acute, consumption of an HF lard-based diet may be linked with pathways of microbial metabolism that potentially contribute to chronic intestinal and systemic inflammation. Such linkage provides further support for reducing consumption of saturated fats.


Assuntos
Bactérias/metabolismo , Dieta Hiperlipídica , Gorduras na Dieta/administração & dosagem , Intestinos/microbiologia , Animais , Biomarcadores/metabolismo , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , Gordura Subcutânea
13.
Acta Biochim Biophys Sin (Shanghai) ; 46(5): 409-14, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24681885

RESUMO

Glutamine is an essential amino acid for malignant tumor cells. Glutaminase that metabolizes glutamine reaches a maximum expression in tumors immediately before the maximum proliferation rate. Tumor cells grow at different rates during the day. We postulated that the activity of glutaminase in tumor cells is subject to the regulation of circadian clock gene. We measured glutaminase by western blot analysis and circadian clock gene expression by real-time polymerase chain reaction in the liver and tumor cells at six equispaced time points of the day in individual mice of a 12/12 h light/dark schedule. The results showed that the tumor-bearing mice, under normal diurnal conditions, are circadianly entrained, as reflected by the normal host locomotor activity rhythms and rhythmic liver clock gene expression. The tumors within these mice are also circadianly organized, as reflected by circadian clock gene (Bmal1) expression. What is most remarkable is that kidney-type glutaminase also showed circadian rhythms in the same pattern with tumor circadian clock gene expression in liver cancer xenograft model, indicating that conditionally inhibiting glutaminase activity may provide a new target for cancer therapy.


Assuntos
Divisão Celular , Relógios Circadianos/genética , Regulação Neoplásica da Expressão Gênica , Glutaminase/metabolismo , Animais , Sequência de Bases , Primers do DNA , Glutaminase/genética , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Reação em Cadeia da Polimerase em Tempo Real
14.
Nat Rev Gastroenterol Hepatol ; 21(5): 348-364, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38383804

RESUMO

The field of bile acid microbiology in the gastrointestinal tract is going through a current rebirth after a peak of activity in the late 1970s and early 1980s. This renewed activity is a result of many factors, including the discovery near the turn of the century that bile acids are potent signalling molecules and technological advances in next-generation sequencing, computation, culturomics, gnotobiology, and metabolomics. We describe the current state of the field with particular emphasis on questions that have remained unanswered for many decades in both bile acid synthesis by the host and metabolism by the gut microbiota. Current knowledge of established enzymatic pathways, including bile salt hydrolase, hydroxysteroid dehydrogenases involved in the oxidation and epimerization of bile acid hydroxy groups, the Hylemon-BjÓ§rkhem pathway of bile acid C7-dehydroxylation, and the formation of secondary allo-bile acids, is described. We cover aspects of bile acid conjugation and esterification as well as evidence for bile acid C3-dehydroxylation and C12-dehydroxylation that are less well understood but potentially critical for our understanding of bile acid metabolism in the human gut. The physiological consequences of bile acid metabolism for human health, important caveats and cautionary notes on experimental design and interpretation of data reflecting bile acid metabolism are also explored.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Ácidos e Sais Biliares/metabolismo , Humanos , Microbioma Gastrointestinal/fisiologia
15.
Heliyon ; 10(12): e32546, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38975228

RESUMO

Understanding the molecular and physical complexity of the tissue microenvironment (TiME) in the context of its spatiotemporal organization has remained an enduring challenge. Recent advances in engineering and data science are now promising the ability to study the structure, functions, and dynamics of the TiME in unprecedented detail; however, many advances still occur in silos that rarely integrate information to study the TiME in its full detail. This review provides an integrative overview of the engineering principles underlying chemical, optical, electrical, mechanical, and computational science to probe, sense, model, and fabricate the TiME. In individual sections, we first summarize the underlying principles, capabilities, and scope of emerging technologies, the breakthrough discoveries enabled by each technology and recent, promising innovations. We provide perspectives on the potential of these advances in answering critical questions about the TiME and its role in various disease and developmental processes. Finally, we present an integrative view that appreciates the major scientific and educational aspects in the study of the TiME.

16.
Biochem Biophys Res Commun ; 439(4): 517-21, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24025674

RESUMO

We have implemented a ratiometric, genetically encoded redox-sensitive green fluorescent protein fused to human glutaredoxin (Grx1-roGFP2) to monitor real time intracellular glutathione redox potentials of mammalian cells. This probe enabled detection of media-dependent oxidation of the cytosol triggered by short wavelength excitation. The transient nature of light-induced oxidation was revealed by time-lapse live cell imaging when time intervals of less than 30s were implemented. In contrast, transient ROS generation was not observed with the parental roGFP2 probe without Grx1, which exhibits slower thiol-disulfide exchange. These data demonstrate that the enhanced sensitivity of the Grx1-roGFP2 fusion protein enables the detection of short-lived ROS in living cells. The superior sensitivity of Grx1-roGFP2, however, also enhances responsiveness to environmental cues introducing a greater likelihood of false positive results during image acquisition.


Assuntos
Técnicas Biossensoriais , Glutarredoxinas/química , Luz , Animais , Células CHO , Cricetinae , Cricetulus , Citoplasma/metabolismo , Citosol/metabolismo , Dissulfetos/metabolismo , Glutarredoxinas/genética , Glutarredoxinas/metabolismo , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Oxirredução , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Compostos de Sulfidrila/metabolismo
17.
J Nutr ; 143(6): 795-803, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23616518

RESUMO

Colonization of the intestinal microbiota after birth plays an important role in development of the neonatal gastrointestinal and immune systems. Two key environmental factors that influence the colonization pattern are delivery mode and nutrition. In this study, the impact of delivery mode and nutrition on microbial colonization and metabolic activity was investigated in the pig model. Vaginally (VD) or caesarean- (CD) delivered piglets were sow-reared (SR) or fed formula alone (FF) or with 4 g/L prebiotics [1:1 ratio of short-chain fructo-oligosaccharides (scFOS) and polydextrose (PDX); FP]. Intestinal contents were collected on d 7 and 14. SR piglets harbored different microbial populations from FF and FP piglets in ileum and ascending colon (AC). On d 7, FF piglets had a greater abundance of Clostridium XIVa in AC, but lower total bacteria, Clostridium XIVa, and Lactobacillus spp. in ileum and Fecalibacterium prausnitzii in AC compared with FP piglets. On d 14, total bacteria were more abundant in FP than FF piglets. Butyrate, isobutyrate, valerate, and isovalerate concentrations in AC were greater in SR piglets compared with FF or FP piglets. At both sampling days, acetate concentrations in AC were similar between the SR and FF groups, whereas propionate was higher in the SR compared with FF group. Delivery mode also significantly affected microbial populations. Bacterial densities differed in AC for Bacteroides-Prevotella at d 7 and Clostridium XIVa at d 14, being higher in VD piglets. Correspondingly, VD piglets had higher propionate in ileum and propionate and butyrate in AC compared with CD piglets. Our results indicate that both delivery mode and nutrition affect microbial composition and metabolic activity. Supplementation of scFOS/PDX to formula modulates microbial colonization and produces a SCFA pattern closer to that of SR piglets.


Assuntos
Animais Recém-Nascidos/microbiologia , Parto Obstétrico/veterinária , Dieta/veterinária , Fermentação , Intestinos/microbiologia , Sus scrofa/microbiologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Animais Recém-Nascidos/crescimento & desenvolvimento , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Carga Bacteriana , Bacteroides/crescimento & desenvolvimento , Butiratos/análise , Cesárea/veterinária , Clostridium/crescimento & desenvolvimento , Colo Ascendente/microbiologia , Parto Obstétrico/métodos , Ácidos Graxos Voláteis/análise , Fezes , Íleo/microbiologia , Intestinos/química , Intestinos/crescimento & desenvolvimento , Lactobacillus/crescimento & desenvolvimento , Leite , Tamanho do Órgão , Polimorfismo de Fragmento de Restrição , Prebióticos , Prevotella/crescimento & desenvolvimento , Propionatos/análise , Sus scrofa/crescimento & desenvolvimento , Valeratos/análise
18.
Cell Microbiol ; 14(3): 401-15, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22103442

RESUMO

The redox-active exotoxin pyocyanin (PCN) can be recovered in 100 µM concentrations in the sputa of bronchiectasis patients chronically infected with Pseudomonas aeruginosa (PA). However, the importance of PCN within bronchiectatic airways colonized by PA remains unrecognized. Recently, we have shown that PCN is required for chronic PA lung infection in mice, and that chronic instillation of PCN induces goblet cell hyperplasia (GCH), pulmonary fibrosis, emphysema and influx of immune cells in mouse airways. Many of these pathological features are strikingly similar to the mouse airways devoid of functional FoxA2, a transcriptional repressor of GCH and mucus biosynthesis. In this study, we postulate that PCN causes and exacerbates GCH and mucus hypersecretion in bronchiectatic airways chronically infected by PA by inactivating FoxA2. We demonstrate that PCN represses the expression of FoxA2 in mouse airways and in bronchial epithelial cells cultured at an air-liquid interface or conventionally, resulting in GCH, increased MUC5B mucin gene expression and mucus hypersecretion. Immunohistochemical and inhibitor studies indicate that PCN upregulates the expression of Stat6 and EGFR, both of which in turn repress the expression of FoxA2. These studies demonstrate that PCN induces GCH and mucus hypersecretion by inactivating FoxA2.


Assuntos
Células Caliciformes/microbiologia , Fator 3-beta Nuclear de Hepatócito/genética , Pulmão/patologia , Pseudomonas aeruginosa/fisiologia , Piocianina/metabolismo , Animais , Linhagem Celular Tumoral , Regulação para Baixo , Receptores ErbB/metabolismo , Células Caliciformes/metabolismo , Células Caliciformes/patologia , Fator 3-beta Nuclear de Hepatócito/metabolismo , Interações Hospedeiro-Patógeno , Humanos , Hiperplasia , Pulmão/microbiologia , Metaplasia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucina-5B/genética , Mucina-5B/metabolismo , Muco/metabolismo , Pseudomonas aeruginosa/metabolismo , Piocianina/farmacologia , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo , Transdução de Sinais , Ativação Transcricional
19.
Int J Oncol ; 63(5)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37654190

RESUMO

Glioblastoma (GBM) is the most common and malignant primary brain tumor affecting adults and remains incurable. The mitochondrial coiled­coil­helix­coiled­coil­helix domain­containing protein 2 (CHCHD2) has been demonstrated to mediate mitochondrial respiration, nuclear gene expression and cell migration; however, evidence of this in GBM is lacking. In the present study, it was hypothesized that CHCHD2 may play a functional role in U87 GBM cells expressing the constitutively active epidermal growth factor receptor variant III (EGFRvIII). The amplification of the CHCHD2 gene was found to be associated with a decreased patient overall and progression­free survival. The CHCHD2 mRNA levels were increased in high­vs. low­grade glioma, IDH­wt GBMs, and in tumor vs. non­tumor tissue. Additionally, CHCHD2 protein expression was greatest in invasive, EGFRvIII­expressing patient­derived samples. The CRISPR­Cas9­mediated knockout of CHCHD2 in EGFRvIII­expressing U87 cells resulted in an altered mitochondrial respiration and glutathione status, in decreased cell growth and invasion under both normoxic and hypoxic conditions, and in an enhanced sensitivity to cytotoxic agents. CHCHD2 was distributed in both the mitochondria and nuclei of U87 and U87vIII cells, and the U87vIII cells exhibited a greater nuclear expression of CHCHD2 compared to isogenic U87 cells. Incubation under hypoxic conditions, serum starvation and the reductive unfolding of CHCHD2 induced the nuclear accumulation of CHCHD2 in both cell lines. Collectively, the findings of the present study indicate that CHCHD2 mediates a variety of GBM characteristics, and highlights mitonuclear retrograde signaling as a pathway of interest in GBM cell biology.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Glioblastoma/patologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Resistencia a Medicamentos Antineoplásicos , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Encefálicas/patologia , Hipóxia , Mitocôndrias/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição
20.
Trials ; 24(1): 113, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36793105

RESUMO

BACKGROUND: Among all racial/ethnic groups, people who identify as African American/Blacks have the second highest colorectal cancer (CRC) incidence in the USA. This disparity may exist because African American/Blacks, compared to other racial/ethnic groups, have a higher prevalence of risk factors for CRC, including obesity, low fiber consumption, and higher intakes of fat and animal protein. One unexplored, underlying mechanism of this relationship is the bile acid-gut microbiome axis. High saturated fat, low fiber diets, and obesity lead to increases in tumor promoting secondary bile acids. Diets high in fiber, such as a Mediterranean diet, and intentional weight loss may reduce CRC risk by modulating the bile acid-gut microbiome axis. The purpose of this study is to test the impact of a Mediterranean diet alone, weight loss alone, or both, compared to typical diet controls on the bile acid-gut microbiome axis and CRC risk factors among African American/Blacks with obesity. Because weight loss or a Mediterranean diet alone can reduce CRC risk, we hypothesize that weight loss plus a Mediterranean diet will reduce CRC risk the most. METHODS: This randomized controlled lifestyle intervention will randomize 192 African American/Blacks with obesity, aged 45-75 years to one of four arms: Mediterranean diet, weight loss, weight loss plus Mediterranean diet, or typical diet controls, for 6 months (48 per arm). Data will be collected at baseline, mid-study, and study end. Primary outcomes include total circulating and fecal bile acids, taurine-conjugated bile acids, and deoxycholic acid. Secondary outcomes include body weight, body composition, dietary change, physical activity, metabolic risk, circulating cytokines, gut microbial community structure and composition, fecal short-chain fatty acids, and expression levels of genes from exfoliated intestinal cells linked to carcinogenesis. DISCUSSION: This study will be the first randomized controlled trial to examine the effects of a Mediterranean diet, weight loss, or both on bile acid metabolism, the gut microbiome, and intestinal epithelial genes associated with carcinogenesis. This approach to CRC risk reduction may be especially important among African American/Blacks given their higher risk factor profile and increased CRC incidence. TRIAL REGISTRATION: ClinicalTrials.gov NCT04753359 . Registered on 15 February 2021.


Assuntos
Neoplasias Colorretais , Dieta Mediterrânea , Microbioma Gastrointestinal , Humanos , Ácidos e Sais Biliares , Negro ou Afro-Americano , Neoplasias Colorretais/metabolismo , Obesidade/diagnóstico , Obesidade/terapia , Obesidade/complicações , Fatores de Risco , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA