Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 622(7983): 574-583, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37369348

RESUMO

Investigating human development is a substantial scientific challenge due to the technical and ethical limitations of working with embryonic samples. In the face of these difficulties, stem cells have provided an alternative to experimentally model inaccessible stages of human development in vitro1-13. Here we show that human pluripotent stem cells can be triggered to self-organize into three-dimensional structures that recapitulate some key spatiotemporal events of early human post-implantation embryonic development. Our system reproducibly captures spontaneous differentiation and co-development of embryonic epiblast-like and extra-embryonic hypoblast-like lineages, establishes key signalling hubs with secreted modulators and undergoes symmetry breaking-like events. Single-cell transcriptomics confirms differentiation into diverse cell states of the perigastrulating human embryo14,15 without establishing placental cell types, including signatures of post-implantation epiblast, amniotic ectoderm, primitive streak, mesoderm, early extra-embryonic endoderm, as well as initial yolk sac induction. Collectively, our system captures key features of human embryonic development spanning from Carnegie stage16 4-7, offering a reproducible, tractable and scalable experimental platform to understand the basic cellular and molecular mechanisms that underlie human development, including new opportunities to dissect congenital pathologies with high throughput.


Assuntos
Linhagem da Célula , Implantação do Embrião , Desenvolvimento Embrionário , Células-Tronco Pluripotentes , Feminino , Humanos , Gravidez , Diferenciação Celular , Camadas Germinativas/citologia , Camadas Germinativas/enzimologia , Células-Tronco Embrionárias Humanas/citologia , Placenta/citologia , Células-Tronco Pluripotentes/citologia , Linha Primitiva/citologia , Linha Primitiva/embriologia , Saco Vitelino/citologia , Saco Vitelino/embriologia
2.
Development ; 149(20)2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36102628

RESUMO

The cellular microenvironment, together with intrinsic regulators, shapes stem cell identity and differentiation capacity. Mammalian early embryos are exposed to hypoxia in vivo and appear to benefit from hypoxic culture in vitro. Yet, how hypoxia influences stem cell transcriptional networks and lineage choices remain poorly understood. Here, we investigated the molecular effects of acute and prolonged hypoxia on embryonic and extra-embryonic stem cells as well as the functional impact on differentiation potential. We find a temporal and cell type-specific transcriptional response including an early primitive streak signature in hypoxic embryonic stem cells mediated by HIF1α. Using a 3D gastruloid differentiation model, we show that hypoxia-induced T expression enables symmetry breaking and axial elongation in the absence of exogenous WNT activation. When combined with exogenous WNT activation, hypoxia enhances lineage representation in gastruloids, as demonstrated by highly enriched signatures of gut endoderm, notochord, neuromesodermal progenitors and somites. Our findings directly link the microenvironment to stem cell function and provide a rationale supportive of applying physiological conditions in models of embryo development.


Assuntos
Endoderma , Linha Primitiva , Animais , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias , Endoderma/metabolismo , Hipóxia/metabolismo , Mamíferos
3.
Dev Cell ; 59(12): 1489-1505.e14, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38579718

RESUMO

Embryogenesis requires substantial coordination to translate genetic programs to the collective behavior of differentiating cells, but understanding how cellular decisions control tissue morphology remains conceptually and technically challenging. Here, we combine continuous Cas9-based molecular recording with a mouse embryonic stem cell-based model of the embryonic trunk to build single-cell phylogenies that describe the behavior of transient, multipotent neuro-mesodermal progenitors (NMPs) as they commit into neural and somitic cell types. We find that NMPs show subtle transcriptional signatures related to their recent differentiation and contribute to downstream lineages through a surprisingly broad distribution of individual fate outcomes. Although decision-making can be heavily influenced by environmental cues to induce morphological phenotypes, axial progenitors intrinsically mature over developmental time to favor the neural lineage. Using these data, we present an experimental and analytical framework for exploring the non-homeostatic dynamics of transient progenitor populations as they shape complex tissues during critical developmental windows.


Assuntos
Diferenciação Celular , Linhagem da Célula , Células-Tronco Embrionárias Murinas , Animais , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mesoderma/citologia , Desenvolvimento Embrionário , Somitos/citologia , Somitos/metabolismo
4.
Bio Protoc ; 11(11): e4042, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-34250208

RESUMO

Post-implantation mammalian embryogenesis involves profound molecular, cellular, and morphogenetic changes. The study of these highly dynamic processes is complicated by the limited accessibility of in utero development. In recent years, several complementary in vitro systems comprising self-organized assemblies of mouse embryonic stem cells, such as gastruloids, have been reported. We recently demonstrated that the morphogenetic potential of gastruloids can be further unlocked by the addition of a low percentage of Matrigel as an extracellular matrix surrogate. This resulted in the formation of highly organized trunk-like structures (TLSs) with a neural tube that is frequently flanked by bilateral somites. Notably, development at the molecular and morphogenetic levels is highly reminiscent of the natural embryo. To facilitate access to this powerful model, here we provide a detailed step-by-step protocol that should allow any lab with access to standard cell culture techniques to implement the culture system. This will provide the user with a means to investigate early mid-gestational mouse embryogenesis at an unprecedented spatiotemporal resolution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA