Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 84(4): 791-801.e6, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38262410

RESUMO

In S phase, duplicating and assembling the whole genome into chromatin requires upregulation of replicative histone gene expression. Here, we explored how histone chaperones control histone production in human cells to ensure a proper link with chromatin assembly. Depletion of the ASF1 chaperone specifically decreases the pool of replicative histones both at the protein and RNA levels. The decrease in their overall expression, revealed by total RNA sequencing (RNA-seq), contrasted with the increase in nascent/newly synthesized RNAs observed by 4sU-labeled RNA-seq. Further inspection of replicative histone RNAs showed a 3' end processing defect with an increase of pre-mRNAs/unprocessed transcripts likely targeted to degradation. Collectively, these data argue for a production defect of replicative histone RNAs in ASF1-depleted cells. We discuss how this regulation of replicative histone RNA metabolism by ASF1 as a "chaperone checkpoint" fine-tunes the histone dosage to avoid unbalanced situations deleterious for cell survival.


Assuntos
Histonas , Proteínas de Saccharomyces cerevisiae , Humanos , Histonas/genética , Histonas/metabolismo , Chaperonas de Histonas/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Replicação do DNA , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , RNA/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Mol Cell ; 82(10): 1909-1923.e5, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35381196

RESUMO

The lack of a consensus DNA sequence defining replication origins in mammals has led researchers to consider chromatin as a means to specify these regions. However, to date, there is no mechanistic understanding of how this could be achieved and maintained given that nucleosome disruption occurs with each fork passage and with transcription. Here, by genome-wide mapping of the de novo deposition of the histone variants H3.1 and H3.3 in human cells during S phase, we identified how their dual deposition mode ensures a stable marking with H3.3 flanked on both sides by H3.1. These H3.1/H3.3 boundaries correspond to the initiation zones of early origins. Loss of the H3.3 chaperone HIRA leads to the concomitant disruption of H3.1/H3.3 boundaries and initiation zones. We propose that the HIRA-dependent deposition of H3.3 preserves H3.1/H3.3 boundaries by protecting them from H3.1 invasion linked to fork progression, contributing to a chromatin-based definition of early replication zones.


Assuntos
Chaperonas de Histonas , Fatores de Transcrição , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Histonas/genética , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Fatores de Transcrição/metabolismo
3.
Nature ; 619(7971): 851-859, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37468633

RESUMO

Lung cancer is the leading cause of cancer deaths worldwide1. Mutations in the tumour suppressor gene TP53 occur in 50% of lung adenocarcinomas (LUADs) and are linked to poor prognosis1-4, but how p53 suppresses LUAD development remains enigmatic. We show here that p53 suppresses LUAD by governing cell state, specifically by promoting alveolar type 1 (AT1) differentiation. Using mice that express oncogenic Kras and null, wild-type or hypermorphic Trp53 alleles in alveolar type 2 (AT2) cells, we observed graded effects of p53 on LUAD initiation and progression. RNA sequencing and ATAC sequencing of LUAD cells uncovered a p53-induced AT1 differentiation programme during tumour suppression in vivo through direct DNA binding, chromatin remodelling and induction of genes characteristic of AT1 cells. Single-cell transcriptomics analyses revealed that during LUAD evolution, p53 promotes AT1 differentiation through action in a transitional cell state analogous to a transient intermediary seen during AT2-to-AT1 cell differentiation in alveolar injury repair. Notably, p53 inactivation results in the inappropriate persistence of these transitional cancer cells accompanied by upregulated growth signalling and divergence from lung lineage identity, characteristics associated with LUAD progression. Analysis of Trp53 wild-type and Trp53-null mice showed that p53 also directs alveolar regeneration after injury by regulating AT2 cell self-renewal and promoting transitional cell differentiation into AT1 cells. Collectively, these findings illuminate mechanisms of p53-mediated LUAD suppression, in which p53 governs alveolar differentiation, and suggest that tumour suppression reflects a fundamental role of p53 in orchestrating tissue repair after injury.


Assuntos
Células Epiteliais Alveolares , Diferenciação Celular , Neoplasias Pulmonares , Pulmão , Proteína Supressora de Tumor p53 , Animais , Camundongos , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Pulmão/citologia , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/prevenção & controle , Camundongos Knockout , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Alelos , Perfilação da Expressão Gênica , Montagem e Desmontagem da Cromatina , DNA/metabolismo , Lesão Pulmonar/genética , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Progressão da Doença , Linhagem da Célula , Regeneração , Autorrenovação Celular
4.
Opt Express ; 32(9): 15955-15966, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38859234

RESUMO

A new interactive quantum zero-knowledge protocol for identity authentication implementable in currently available quantum cryptographic devices is proposed and demonstrated. The protocol design involves a verifier and a prover knowing a pre-shared secret, and the acceptance or rejection of the proof is determined by the quantum bit error rate. It has been implemented in modified Quantum Key Distribution devices executing two fundamental cases. In the first case, all players are honest, while in the second case, one of the users is a malicious player. We demonstrate an increase of the quantum bit error rate around 25% in the latter case compared to the case of honesty. The protocol has also been validated for distances from a back-to-back setup to more than 60 km between verifier and prover. The security and robustness of the protocol has been analysed, demonstrating its completeness, soundness and zero-knowledge properties.

5.
Opt Express ; 24(12): 12769-75, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27410296

RESUMO

Multicarrier intensity modulation of a bandwidth-limited long-wavelength VCSEL is exploited combined to direct detection to achieve very high capacity simple systems for short-reach applications. Tailored FDM subcarriers modulation and allocation allow to match the non-uniform frequency response of the system induced by the direct modulation and detection of the FDM signal and by the uncompensated SSMF propagation, overcoming the VCSEL bandwidth limitations. A whole transported throughput ranging from 34 Gb/s to 25 Gb/s from few hundreds meters to 20 km of SSMF propagation is experimentally demonstrated even by employing a 5-GHz band VCSEL source.

6.
Nucleic Acids Res ; 42(8): e71, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24574529

RESUMO

Alternative splicing is the main mechanism governing protein diversity. The recent developments in RNA-Seq technology have enabled the study of the global impact and regulation of this biological process. However, the lack of standardized protocols constitutes a major bottleneck in the analysis of alternative splicing. This is particularly important for the identification of exon-exon junctions, which is a critical step in any analysis workflow. Here we performed a systematic benchmarking of alignment tools to dissect the impact of design and method on the mapping, detection and quantification of splice junctions from multi-exon reads. Accordingly, we devised a novel pipeline based on TopHat2 combined with a splice junction detection algorithm, which we have named FineSplice. FineSplice allows effective elimination of spurious junction hits arising from artefactual alignments, achieving up to 99% precision in both real and simulated data sets and yielding superior F1 scores under most tested conditions. The proposed strategy conjugates an efficient mapping solution with a semi-supervised anomaly detection scheme to filter out false positives and allows reliable estimation of expressed junctions from the alignment output. Ultimately this provides more accurate information to identify meaningful splicing patterns. FineSplice is freely available at https://sourceforge.net/p/finesplice/.


Assuntos
Processamento Alternativo , Sítios de Splice de RNA , Alinhamento de Sequência/métodos , Análise de Sequência de RNA/métodos , Algoritmos , Software
7.
Opt Express ; 21(21): 25174-83, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24150359

RESUMO

The complexity and the power consumption of digital signal processing are crucial issues in optical transmission systems based on mode division multiplexing and coherent multiple-input multiple-output (MIMO) processing at the receiver. In this paper the inherent characteristic of spatial separation between fiber modes is exploited, getting a MIMO system where joint demultiplexing and detection is based on spatially separated photodetectors. After photodetection, one has a MIMO system with nonlinear crosstalk between modes. The paper shows that the nonlinear crosstalk can be dealt with by a low-complexity and non-adaptive detection scheme, at least in the cases presented in the paper.

8.
Commun Biol ; 4(1): 417, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33772115

RESUMO

Tumour evolution is driven by both genetic and epigenetic changes. CENP-A, the centromeric histone H3 variant, is an epigenetic mark that directly perturbs genetic stability and chromatin when overexpressed. Although CENP-A overexpression is a common feature of many cancers, how this impacts cell fate and response to therapy remains unclear. Here, we established a tunable system of inducible and reversible CENP-A overexpression combined with a switch in p53 status in human cell lines. Through clonogenic survival assays, single-cell RNA-sequencing and cell trajectory analysis, we uncover the tumour suppressor p53 as a key determinant of how CENP-A impacts cell state, cell identity and therapeutic response. If p53 is functional, CENP-A overexpression promotes senescence and radiosensitivity. Surprisingly, when we inactivate p53, CENP-A overexpression instead promotes epithelial-mesenchymal transition, an essential process in mammalian development but also a precursor for tumour cell invasion and metastasis. Thus, we uncover an unanticipated function of CENP-A overexpression to promote cell fate reprogramming, with important implications for development and tumour evolution.


Assuntos
Proteína Centromérica A/genética , Regulação da Expressão Gênica , Proteína Supressora de Tumor p53/genética , Proteína Centromérica A/metabolismo , Humanos , RNA-Seq , Análise de Célula Única , Proteína Supressora de Tumor p53/metabolismo
9.
Opt Express ; 18(7): 7108-20, 2010 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-20389732

RESUMO

The results of a theoretical and experimental investigation of the Gouy effect in Bessel beams are presented. We point out that the peculiar feature of the Bessel beams of being nondiffracting is related to the accumulation of an extra axial phase shift (i.e., the Gouy phase shift) linearly dependent on the propagation distance. The constant spatial rate of variation of the Gouy phase shift is independent of the order of the Bessel beam, while it is a growing function of the transverse component of the angular spectrum wave-vectors, originated by the transverse confinement of the beam. A free-space Mach-Zehnder interferometer has been set-up for measuring the transverse intensity distribution of the interference between holographically-produced finite-aperture Bessel beams of order from zero up to three and a reference Gaussian beam, at a wavelength of 633 nm. The interference patterns have been registered for different propagation distances and show a spatial periodicity, in agreement with the expected period due to the linear increase of the Gouy phase shift of the realized Bessel beams.


Assuntos
Óptica e Fotônica , Algoritmos , Simulação por Computador , Desenho de Equipamento , Holografia/métodos , Interferometria/métodos , Luz , Modelos Estatísticos , Distribuição Normal , Fenômenos Físicos
10.
Clin Cancer Res ; 26(21): 5735-5746, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32900798

RESUMO

PURPOSE: Medulloblastoma is an important cause of mortality and morbidity in pediatric oncology. Here, we investigated whether the DNA repair inhibitor, AsiDNA, could help address a significant unmet clinical need in medulloblastoma care, by improving radiotherapy efficacy without increasing radiation-associated toxicity. EXPERIMENTAL DESIGN: To evaluate the brain permeability of AsiDNA upon systemic delivery, we intraperitoneally injected a fluorescence form of AsiDNA in models harboring brain tumors and in models still in development. Studies evaluated toxicity associated with combination of AsiDNA with radiation in the treatment of young developing animals at subacute levels, related to growth and development, and at chronic levels, related to brain organization and cognitive skills. Efficacy of the combination of AsiDNA with radiation was tested in two different preclinical xenografted models of high-risk medulloblastoma and in a panel of medulloblastoma cell lines from different molecular subgroups and TP53 status. Role of TP53 on the AsiDNA-mediated radiosensitization was analyzed by RNA-sequencing, DNA repair recruitment, and cell death assays. RESULTS: Capable of penetrating young brain tissues, AsiDNA showed no added toxicity to radiation. Combination of AsiDNA with radiotherapy improved the survival of animal models more efficiently than increasing radiation doses. Medulloblastoma radiosensitization by AsiDNA was not restricted to a specific molecular group or status of TP53. Molecular mechanisms of AsiDNA, previously observed in adult malignancies, were conserved in pediatric models and resembled dose increase when combined with irradiation. CONCLUSIONS: Our results suggest that AsiDNA is an attractive candidate to improve radiotherapy in medulloblastoma, with no indication of additional toxicity in developing brain tissues.


Assuntos
DNA/farmacologia , Meduloblastoma/tratamento farmacológico , Radiossensibilizantes/farmacologia , Proteína Supressora de Tumor p53/genética , Adulto , Animais , Linhagem Celular Tumoral , Criança , DNA/efeitos adversos , Reparo do DNA/genética , Reparo do DNA/efeitos da radiação , Xenoenxertos , Humanos , Masculino , Meduloblastoma/genética , Meduloblastoma/patologia , Meduloblastoma/radioterapia , Pediatria , RNA-Seq , Radiossensibilizantes/efeitos adversos
11.
Opt Express ; 17(24): 21748-53, 2009 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-19997417

RESUMO

1.55-microm single-mode VCSEL frequency chirp behavior is investigated in under-threshold and above-threshold operating conditions for different VCSEL-to-VCSEL injection locking configurations with respect to free-running case. We experimentally evaluated the capability of adjusting the frequency chirp, reducing its value and inverting the sign. The control over the frequency chirp is obtained changing the wavelength detuning and power injection ratio between the VCSEL master and the VCSEL slave. Advantages of the chirp inversion are demonstrated for 10 Gb/s error-free propagation at 1.55-microm over 40-km standard single mode fiber without any dispersion compensation.

12.
J Cell Biol ; 218(1): 39-54, 2019 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-30257851

RESUMO

As the building blocks of chromatin, histones are central to establish and maintain particular chromatin states associated with given cell fates. Importantly, histones exist as distinct variants whose expression and incorporation into chromatin are tightly regulated during the cell cycle. During S phase, specialized replicative histone variants ensure the bulk of the chromatinization of the duplicating genome. Other non-replicative histone variants deposited throughout the cell cycle at specific loci use pathways uncoupled from DNA synthesis. Here, we review the particular dynamics of expression, cellular transit, assembly, and disassembly of replicative and non-replicative forms of the histone H3. Beyond the role of histone variants in chromatin dynamics, we review our current knowledge concerning their distinct regulation to control their expression at different levels including transcription, posttranscriptional processing, and protein stability. In light of this unique regulation, we highlight situations where perturbations in histone balance may lead to cellular dysfunction and pathologies.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/metabolismo , Genoma , Chaperonas de Histonas/genética , Histonas/genética , Processamento de Proteína Pós-Traducional , Animais , Ciclo Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Centrômero/metabolismo , Centrômero/ultraestrutura , Cromatina/ultraestrutura , Replicação do DNA , Regulação da Expressão Gênica , Loci Gênicos , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Humanos , Transcrição Gênica
13.
Nat Commun ; 9(1): 3181, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30093638

RESUMO

DNA replication is a challenge for the faithful transmission of parental information to daughter cells, as both DNA and chromatin organization must be duplicated. Replication stress further complicates the safeguard of epigenome integrity. Here, we investigate the transmission of the histone variants H3.3 and H3.1 during replication. We follow their distribution relative to replication timing, first in the genome and, second, in 3D using super-resolution microscopy. We find that H3.3 and H3.1 mark early- and late-replicating chromatin, respectively. In the nucleus, H3.3 forms domains, which decrease in density throughout replication, while H3.1 domains increase in density. Hydroxyurea impairs local recycling of parental histones at replication sites. Similarly, depleting the histone chaperone ASF1 affects recycling, leading to an impaired histone variant landscape. We discuss how faithful transmission of histone variants involves ASF1 and can be impacted by replication stress, with ensuing consequences for cell fate and tumorigenesis.


Assuntos
Proteínas de Ciclo Celular/química , Cromatina/química , Replicação do DNA , Histonas/química , Linhagem da Célula , DNA/química , Epigênese Genética , Genoma Humano , Células HeLa , Humanos , Hidroxiureia/química , Microscopia , Microscopia de Fluorescência , Chaperonas Moleculares , Nucleossomos/química , Fase S
14.
Neuroscientist ; 23(5): 466-477, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27837180

RESUMO

The complexity of the mammalian brain requires highly specialized protein function and diversity. As neurons differentiate and the neuronal circuitry is established, several mRNAs undergo alternative splicing and other posttranscriptional changes that expand the variety of protein isoforms produced. Recent advances are beginning to shed light on the molecular mechanisms that regulate isoform switching during neurogenesis and the role played by specific RNA binding proteins in this process. Neurogenesis and neuronal wiring were recently shown to also be regulated by RNA degradation through nonsense-mediated decay. An additional layer of regulatory complexity in these biological processes is the interplay between alternative splicing and long noncoding RNAs. Dysregulation of posttranscriptional regulation results in defective neuronal differentiation and/or synaptic connections that lead to neurodevelopmental and psychiatric disorders.


Assuntos
Processamento Alternativo/fisiologia , Encéfalo/fisiologia , Neurogênese/fisiologia , Processamento Pós-Transcricional do RNA/fisiologia , Animais , Encéfalo/citologia , Expressão Gênica/fisiologia , Humanos , Neurônios/fisiologia
15.
Cell Chem Biol ; 23(11): 1372-1382, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27746127

RESUMO

Embryonic stem cells (ESC) have the potential to generate all the cell lineages that form the body. However, the molecular mechanisms underlying ESC differentiation and especially the role of alternative splicing in this process remain poorly understood. Here, we show that the alternative splicing regulator MBNL1 promotes generation of the atypical calcineurin Aß variant CnAß1 in mouse ESCs (mESC). CnAß1 has a unique C-terminal domain that drives its localization mainly to the Golgi apparatus by interacting with Cog8. CnAß1 regulates the intracellular localization and activation of the mTORC2 complex. CnAß1 knockdown results in delocalization of mTORC2 from the membrane to the cytoplasm, inactivation of the AKT/GSK3ß/ß-catenin signaling pathway, and defective mesoderm specification. In summary, here we unveil the structural basis for the mechanism of action of CnAß1 and its role in the differentiation of mESCs to the mesodermal lineage.


Assuntos
Calcineurina/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Calcineurina/análise , Diferenciação Celular , Linhagem Celular , Complexo de Golgi/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Complexos Multiproteicos/análise , Transdução de Sinais , Serina-Treonina Quinases TOR/análise
16.
Biomed Pharmacother ; 69: 47-55, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25661337

RESUMO

Ribavirin is phosphorylated by adenosine kinase 1 (AK1) and cytosolic 5'-nucleotidase 2 and it is transported into cells by concentrative nucleoside transporters (CNT) 2/3, coded by SLC28A2/3 genes, and equilibrative nucleoside transporters (ENT) 1/2, coded by SLC29A1/2 genes. We evaluated the association of some polymorphisms of IL28B, SLC28A2/3, SLC29A1, ABCB1, NT5C2, AK1, HNF4α genes and ribavirin treatment outcome and pharmacokinetics after 4weeks of therapy, in a cohort of HCV-1/4 Italian patients. Allelic discrimination was performed by real-time PCR; plasma concentrations were determined at the end of dosing interval (Ctrough) using an HPLC-UV method. Non response was negatively predicted by cryoglobulinemia and IL28B_rs12980275 AA genotype and positively by Metavir score; Metavir score, insulin resistance and SLC28A2_rs1060896 CA/AA and HNF4α_rs1884613 CC genotypes were negative predictive factors of SVR, whereas HCV viral load at baseline and IL28B_rs12980275 AA and rs8099917 TT genotypes positively predicted this outcome; RVR was negatively predicted by insulin resistance and positively by cryoglobulinemia and IL28B_rs12980275 AA genotype; Metavir score and insulin resistance were able to negatively predict EVR, whereas cryoglobulinemia and IL28B_rs12980275 AA genotype positively predicted it; at last, virological relapse was negatively predicted by IL28B_rs8099917 TT and AK1_rs1109374 TT genotypes, insulin resistance was a positive predictor factor. Concerning ribavirin pharmacokinetics, SLC28A2_rs11854488 TT was related to lower Ctrough levels; conversely patients with TC profile of SLC28A3_rs10868138 and SLC29A1_rs760370 GG genotype had higher ribavirin levels. These results might contribute to the clarification of mechanisms causing the individuality in the response to ribavirin containing therapy.


Assuntos
Hepacivirus/efeitos dos fármacos , Hepatite C Crônica/tratamento farmacológico , Hepatite C Crônica/genética , Ribavirina/farmacocinética , Adulto , Estudos de Coortes , Feminino , Frequência do Gene/genética , Hepatite C Crônica/virologia , Humanos , Itália , Desequilíbrio de Ligação/genética , Modelos Logísticos , Masculino , Proteínas de Membrana Transportadoras/genética , Pessoa de Meia-Idade , Análise Multivariada , Farmacogenética , Polimorfismo de Nucleotídeo Único/genética , Ribavirina/farmacologia , Ribavirina/uso terapêutico , Resultado do Tratamento
17.
J Cardiovasc Transl Res ; 6(6): 945-55, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23775418

RESUMO

Alternative splicing is the main driver of protein diversity and allows the production of different proteins from each gene in the genome. Changes in exon exclusion, intron retention or the use of alternative splice sites can alter protein structure, localisation, regulation and function. In the heart, alternative splicing of sarcomeric genes, ion channels and cell signalling proteins can lead to cardiomyopathies, arrhythmias and other pathologies. Also, a number of inherited conditions and heart-related diseases develop as a result of mutations affecting splicing. Here, we review the impact that changes in alternative splicing have on individual genes and on whole biological processes associated with heart disease. We also discuss promising therapeutic tools based on the manipulation of alternative splicing.


Assuntos
Processamento Alternativo , Cardiopatias/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Canais Iônicos/metabolismo , Miócitos Cardíacos/metabolismo , Sarcômeros/metabolismo , Animais , Sinalização do Cálcio , Regulação da Expressão Gênica , Predisposição Genética para Doença , Terapia Genética , Cardiopatias/genética , Cardiopatias/fisiopatologia , Cardiopatias/terapia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Canais Iônicos/genética , Contração Miocárdica , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA