Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci Res ; 101(8): 1345-1359, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031448

RESUMO

Classical dynamins (DNMs) are GTPase proteins engaged in endocytosis, a fundamental process for cargo internalization from the plasma membrane. In mammals, three DNM genes are present with different expression patterns. DNM1 is expressed at high levels in neurons, where it takes place in the recycling of synaptic vesicles; DNM2 is ubiquitously expressed, while DNM3 is found in the brain and in the testis. Due to the conservation of genes in comparison to mammals, we took advantage of a zebrafish model for functional characterization of dnm1a, ortholog of mammalian DNM1. Our data strongly demonstrated that dnm1a has a nervous tissue-specific expression pattern and plays a role in the formation of both axon and synapse. This is the first in vivo study that collects evidence about the effects of dnm1a loss of function in zebrafish, thus providing a new excellent model to be used in different scientific fields.


Assuntos
Tecido Nervoso , Peixe-Zebra , Animais , Masculino , Axônios , Neurônios/metabolismo , Sinapses/metabolismo , Mamíferos
2.
Neuroendocrinology ; 112(6): 580-594, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34348348

RESUMO

INTRODUCTION: Neuroendocrine transdifferentiation (NED) of prostate cancer (PC) cells is associated with the development of resistance to antiandrogen therapy and poor prognosis in patients with castration-resistant PC (CRPC). Many of the molecular events, involved in NED, appear to be mediated by epigenetic mechanisms. In this study, we evaluated the antitumor activity and epigenetic modulation of 2 epigenetic drugs, such as the demethylating agent 5-aza-2'-deoxycytidine (AZA) and the methyl donor S-adenosylmethionine (SAM), in 2 human CRPC cell lines with NED (DU-145 and PC-3). METHODS: The effects of AZA and SAM on cell viability, cell cycle, apoptosis, migration, and genome-wide DNA methylation profiling have been evaluated. RESULTS: Both drugs showed a prominent antitumor activity in DU-145 and PC-3 cells, through perturbation of cell cycle progression, induction of apoptosis, and inhibition of cell migration. AZA and SAM reversed NED in DU-145 and PC-3, respectively. Moreover, AZA treatment modified DNA methylation pattern in DU-145 cells, sustaining a pervasive hypomethylation of the genome, with a relevant effect on several pathways involved in the regulation of cell proliferation, apoptosis, and cell migration, in particular Wnt/ß-catenin. CONCLUSIONS: A relevant antitumor activity of these epigenetic drugs on CRPC cell lines with NED opens a new scenario in the therapy of this lethal variant of PC.


Assuntos
Epigênese Genética , Neoplasias de Próstata Resistentes à Castração , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia
3.
Int J Mol Sci ; 23(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35897702

RESUMO

Lung carcinoids are neuroendocrine tumors that comprise well-differentiated typical (TCs) and atypical carcinoids (ACs). Preclinical models are indispensable for cancer drug screening since current therapies for advanced carcinoids are not curative. We aimed to develop a novel in vivo model of lung carcinoids based on the xenograft of lung TC (NCI-H835, UMC-11, and NCI-H727) and AC (NCI-H720) cell lines and patient-derived cell cultures in Tg(fli1a:EGFP)y1 zebrafish embryos. We exploited this platform to test the anti-tumor activity of sulfatinib. The tumorigenic potential of TC and AC implanted cells was evaluated by the quantification of tumor-induced angiogenesis and tumor cell migration as early as 24 h post-injection (hpi). The characterization of tumor-induced angiogenesis was performed in vivo and in real time, coupling the tumor xenograft with selective plane illumination microscopy on implanted zebrafish embryos. TC-implanted cells displayed a higher pro-angiogenic potential compared to AC cells, which inversely showed a relevant migratory behavior within 48 hpi. Sulfatinib inhibited tumor-induced angiogenesis, without affecting tumor cell spread in both TC and AC implanted embryos. In conclusion, zebrafish embryos implanted with TC and AC cells faithfully recapitulate the tumor behavior of human lung carcinoids and appear to be a promising platform for drug screening.


Assuntos
Tumor Carcinoide , Carcinoma Neuroendócrino , Neoplasias Pulmonares , Animais , Tumor Carcinoide/tratamento farmacológico , Carcinoma Neuroendócrino/patologia , Xenoenxertos , Humanos , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Peixe-Zebra
4.
Neuroendocrinology ; 111(10): 937-950, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33075795

RESUMO

INTRODUCTION: Somatostatin and dopamine (DA) receptors have a pivotal role in controlling hormone secretion and cell proliferation in different neuroendocrine neoplasms, including medullary thyroid cancer (MTC). In the present preclinical study, we evaluated the anti-tumor activity of TBR-065 (formerly BIM-23B065), a second-generation somatostatin-DA chimera, in 2 human MTC cell lines. METHODS: The effects of lanreotide (LAN) and TBR-065 on cell growth and proliferation, calcitonin (CT) secretion, cell cycle, apoptosis, cell migration, and tumor-induced angiogenesis have been evaluated through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, DNA flow cytometry with propidium iodide (PI), Annexin V-FITC/PI staining, electrochemiluminescence immuno assay, wound-healing assay, and zebrafish platform, respectively. RESULTS: TBR-065 exerted a more prominent anti-tumor activity than LAN in both MTC cell lines, as shown by inhibition of cell proliferation (maximal inhibition in TT: -50.3 and -37.6%, respectively; in MZ-CRC-1: -58.8 and -27%, respectively) and migration (in TT: -42.7 and -22.9%, respectively; in MZ-CRC-1: -75.5 and -58.2%, respectively). Only the new chimera decreased significantly the fraction of cells in S phase (TT: -33.8%; MZ-CRC-1: -18.8%) and increased cells in G2/M phase (TT: +13%; MZ-CRC-1: +30.5%). In addition, TBR-065 exerted a more prominent pro-apoptotic effect than LAN in TT cells. A concomitant decrease in CT secretion was observed after 2 days of incubation with both drugs, with a more relevant effect of TBR-065. However, neither LAN nor TBR-065 showed any effect on tumor-induced angiogenesis, as evaluated using a zebrafish/tumor xenograft model. DISCUSSION/CONCLUSION: In MTC cell lines, a second-generation somatostatin-DA analog, TBR-065, exerts a more relevant anti-tumor activity than LAN, through modulation of cell cycle, induction of apoptosis, and reduction in migration. Further studies are required to establish whether TBR-065 has comparable potent inhibitory effects on tumor growth in vivo.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Neuroendócrino/tratamento farmacológico , Dopamina/análise , Somatostatina/análise , Neoplasias da Glândula Tireoide/tratamento farmacológico , Linhagem Celular Tumoral , Humanos
5.
Nucleic Acids Res ; 47(3): 1278-1293, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30544196

RESUMO

SMYD3 is a methylase previously linked to cancer cell invasion and migration. Here we show that SMYD3 favors TGFß-induced epithelial-mesenchymal transition (EMT) in mammary epithelial cells, promoting mesenchymal and EMT transcription factors expression. SMYD3 directly interacts with SMAD3 but it is unnecessary for SMAD2/3 phosphorylation and nuclear translocation. Conversely, SMYD3 is indispensable for SMAD3 direct association to EMT genes regulatory regions. Accordingly, SMYD3 knockdown or its pharmacological blockade with the BCI121 inhibitor dramatically reduce TGFß-induced SMAD3 association to the chromatin. Remarkably, BCI121 treatment attenuates mesenchymal genes transcription in the mesenchymal-like MDA-MB-231 cell line and reduces their invasive ability in vivo, in a zebrafish xenograft model. In addition, clinical datasets analysis revealed that higher SMYD3 levels are linked to a less favorable prognosis in claudin-low breast cancers and to a reduced metastasis free survival in breast cancer patients. Overall, our data point at SMYD3 as a pivotal SMAD3 cofactor that promotes TGFß-dependent mesenchymal gene expression and cell migration in breast cancer, and support SMYD3 as a promising pharmacological target for anti-cancer therapy.


Assuntos
Neoplasias da Mama/genética , Histona-Lisina N-Metiltransferase/genética , Proteína Smad3/genética , Fator de Crescimento Transformador beta/genética , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Cromatina/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Técnicas de Silenciamento de Genes , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Humanos , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
6.
Int J Mol Sci ; 22(6)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809722

RESUMO

Medullary thyroid carcinoma (MTC) is a tumor deriving from the thyroid C cells. Vandetanib (VAN) and cabozantinib (CAB) are two tyrosine kinase inhibitors targeting REarranged during Transfection (RET) and other kinase receptors and are approved for the treatment of advanced MTC. We aim to compare the in vitro and in vivo anti-tumor activity of VAN and CAB in MTC. The effects of VAN and CAB on viability, cell cycle, and apoptosis of TT and MZ-CRC-1 cells are evaluated in vitro using an MTT assay, DNA flow cytometry with propidium iodide, and Annexin V-FITC/propidium iodide staining, respectively. In vivo, the anti-angiogenic potential of VAN and CAB is evaluated in Tg(fli1a:EGFP)y1 transgenic fluorescent zebrafish embryos by analyzing the effects on the physiological development of the sub-intestinal vein plexus and the tumor-induced angiogenesis after TT and MZ-CRC-1 xenotransplantation. VAN and CAB exert comparable effects on TT and MZ-CRC-1 viability inhibition and cell cycle perturbation, and stimulated apoptosis with a prominent effect by VAN in MZ-CRC-1 and CAB in TT cells. Regarding zebrafish, both drugs inhibit angiogenesis in a dose-dependent manner, in particular CAB shows a more potent anti-angiogenic activity than VAN. To conclude, although VAN and CAB show comparable antiproliferative effects in MTC, the anti-angiogenic activity of CAB appears to be more relevant.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Anilidas/uso terapêutico , Carcinoma Neuroendócrino/tratamento farmacológico , Piperidinas/uso terapêutico , Piridinas/uso terapêutico , Quinazolinas/uso terapêutico , Neoplasias da Glândula Tireoide/tratamento farmacológico , Peixe-Zebra/fisiologia , Anilidas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Carcinoma Neuroendócrino/irrigação sanguínea , Carcinoma Neuroendócrino/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Embrião não Mamífero/irrigação sanguínea , Embrião não Mamífero/efeitos dos fármacos , Humanos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Fisiológica/efeitos dos fármacos , Piridinas/farmacologia , Neoplasias da Glândula Tireoide/irrigação sanguínea , Neoplasias da Glândula Tireoide/patologia , Peixe-Zebra/embriologia
7.
J Cell Mol Med ; 24(11): 6272-6282, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32323916

RESUMO

The transcription factor RUNX1, a pivotal regulator of HSCs and haematopoiesis, is a frequent target of chromosomal translocations, point mutations or altered gene/protein dosage. These modifications lead or contribute to the development of myelodysplasia, leukaemia or platelet disorders. A better understanding of how regulatory elements contribute to fine-tune the RUNX1 expression in haematopoietic tissues could improve our knowledge of the mechanisms responsible for normal haematopoiesis and malignancy insurgence. The cohesin RAD21 was reported to be a regulator of RUNX1 expression in the human myeloid HL60 cell line and during primitive haematopoiesis in zebrafish. In our study, we demonstrate that another cohesin, NIPBL, exerts positive regulation of RUNX1 in three different contexts in which RUNX1 displays important functions: in megakaryocytes derived from healthy donors, in bone marrow samples obtained from adult patients with acute myeloid leukaemia and during zebrafish haematopoiesis. In this model, we demonstrate that alterations in the zebrafish orthologue nipblb reduce runx1 expression with consequent defects in its erythroid and myeloid targets such as gata1a and spi1b in an opposite way to rad21. Thus, also in the absence of RUNX1 translocation or mutations, additional factors such as defects in the expression of NIPBL might induce haematological diseases.


Assuntos
Proteínas de Ciclo Celular/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Regulação Leucêmica da Expressão Gênica , Hematopoese/genética , Proteínas de Peixe-Zebra/genética , Adulto , Idoso , Animais , Células da Medula Óssea/metabolismo , Proteínas de Ciclo Celular/metabolismo , Criança , Estudos de Coortes , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Regulação para Baixo/genética , Humanos , Leucemia Mieloide Aguda/genética , Megacariócitos/metabolismo , Pessoa de Meia-Idade , Doadores de Tecidos , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
Development ; 140(7): 1528-36, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23482488

RESUMO

During mouse skeletal muscle development, the Nfix gene has a pivotal role in regulating fetal-specific transcription. Zebrafish and mice share related programs for muscle development, although zebrafish develops at a much faster rate. In fact, although mouse fetal muscle fibers form after 15 days of development, in fish secondary muscle fibers form by 48 hours post-fertilization in a process that until now has been poorly characterized mechanically. In this work, we studied the zebrafish ortholog Nfix (nfixa) and its role in the proper switch to the secondary myogenic wave. This allowed us to highlight evolutionarily conserved and divergent functions of Nfix. In fact, the knock down of nfixa in zebrafish blocks secondary myogenesis, as in mouse, but also alters primary slow muscle fiber formation. Moreover, whereas Nfix mutant mice are motile, nfixa knockdown zebrafish display impaired motility that probably depends upon disruption of the sarcoplasmic reticulum. We conclude that, during vertebrate evolution, the transcription factor Nfix lost some specific functions, probably as a consequence of the different environment in which teleosts and mammals develop.


Assuntos
Evolução Molecular , Músculo Esquelético/embriologia , Fatores de Transcrição NFI/fisiologia , Vertebrados/genética , Proteínas de Peixe-Zebra/fisiologia , Animais , Animais Geneticamente Modificados , Sequência Conservada/fisiologia , Embrião de Mamíferos , Embrião não Mamífero , Especiação Genética , Camundongos , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Fatores de Transcrição NFI/genética , Filogenia , Vertebrados/embriologia , Vertebrados/fisiologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
9.
Biochim Biophys Acta ; 1845(1): 42-52, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24295567

RESUMO

Pancreatic adenocarcinoma remains an unresolved therapeutic challenge because of its intrinsically refractoriness to both chemo- and radiotherapy due to the complexity of signaling and the activation of survival pathways in cancer cells. Recent studies have demonstrated that the combination of some drugs, targeting most of aberrant pathways crucial for the survival of pancreatic cancer cells may be a valid antitumor strategy for this cancer. Type I interferons (IFNs) may have a role in the pathogenesis and progression of pancreatic adenocarcinoma, but the limit of their clinical use is due to the activation of tumor resistance mechanisms, including JAK-2/STAT-3 pathway. Moreover, aberrant constitutive activation of STAT-3 proteins has been frequently detected in pancreatic adenocarcinoma. The selective targeting of these cell survival cascades could be a promising strategy in order to enhance the antitumor effects of type I IFNs. The activation of peroxisome proliferator-activated receptor γ (PPAR-γ), on the other hand, has a suppressive activity on STAT-3. In fact, PPAR-γ agonists negatively modulate STAT-3 through direct and/or indirect mechanisms in several normal and cancer models. This review provides an overview on the current knowledge about the molecular mechanisms and antitumor activity of these two promising classes of drugs for pancreatic cancer therapy. Finally, the synergistic antiproliferative activity of combined IFN-ß and troglitazone treatment on pancreatic cancer cell lines, evaluated in vitro, and the consequent potential clinical applications will be discussed.


Assuntos
Interferon Tipo I/fisiologia , PPAR gama/fisiologia , Neoplasias Pancreáticas/tratamento farmacológico , Transdução de Sinais/fisiologia , Animais , Proliferação de Células , Humanos , Interferon beta/uso terapêutico , PPAR gama/agonistas , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/patologia
10.
Biochim Biophys Acta ; 1842(4): 665-75, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24463171

RESUMO

The lysosomal hydrolase galactocerebrosidase (GALC) catalyzes the removal of galactose from galactosylceramide and from other sphingolipids. GALC deficiency is responsible for globoid cell leukodystrophy (GLD), or Krabbe's disease, an early lethal inherited neurodegenerative disorder characterized by the accumulation of the neurotoxic metabolite psychosine in the central nervous system (CNS). The poor outcome of current clinical treatments calls for novel model systems to investigate the biological impact of GALC down-regulation and for the search of novel therapeutic strategies in GLD. Zebrafish (Danio rerio) represents an attractive vertebrate model for human diseases. Here, lysosomal GALC activity was demonstrated in the brain of zebrafish adults and embryos. Accordingly, we identified two GALC co-orthologs (named galca and galcb) dynamically co-expressed in CNS during zebrafish development. Both genes encode for lysosomal enzymes endowed with GALC activity. Single down-regulation of galca or galcb by specific antisense morpholino oligonucleotides results in a partial decrease of GALC activity in zebrafish embryos that was abrogated in double galca/galcb morphants. However, no psychosine accumulation was observed in galca/galcb double morphants. Nevertheless, double galca/galcb knockdown caused reduction and partial disorganization of the expression of the early neuronal marker neuroD and an increase of apoptotic events during CNS development. These observations provide new insights into the pathogenesis of GLD, indicating that GALC loss-of-function may have pathological consequences in developing CNS independent of psychosine accumulation. Also, they underscore the potentiality of the zebrafish system in studying the pathogenesis of lysosomal neurodegenerative diseases, including GLD.


Assuntos
Galactosilceramidase/fisiologia , Leucodistrofia de Células Globoides/etiologia , Peixe-Zebra/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/enzimologia , Clonagem Molecular , Modelos Animais de Doenças , Galactosilceramidase/genética , Humanos , Leucodistrofia de Células Globoides/enzimologia , Peixe-Zebra/embriologia
11.
J Med Genet ; 51(7): 436-43, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24711647

RESUMO

BACKGROUND: Cardiovascular malformations have a higher incidence in patients with NF1 microdeletion syndrome compared to NF1 patients with intragenic mutation, presumably owing to haploinsufficiency of one or more genes included in the deletion interval and involved in heart development. In order to identify which genes could be responsible for cardiovascular malformations in the deleted patients, we carried out expression studies in mouse embryos and functional studies in zebrafish. METHODS AND RESULTS: The expression analysis of three candidate genes included in the NF1 deletion interval, ADAP2, SUZ12 and UTP6, performed by in situ hybridisation, showed the expression of ADAP2 murine ortholog in heart during fundamental phases of cardiac morphogenesis. In order to investigate the role of ADAP2 in cardiac development, we performed loss-of-function experiments of zebrafish ADAP2 ortholog, adap2, by injecting two different morpholino oligos (adap2-MO and UTR-adap2-MO). adap2-MOs-injected embryos (morphants) displayed in vivo circulatory and heart shape defects. The molecular characterisation of morphants with cardiac specific markers showed that the injection of adap2-MOs causes defects in heart jogging and looping. Additionally, morphological and molecular analysis of adap2 morphants demonstrated that the loss of adap2 function leads to defective valvulogenesis, suggesting a correlation between ADAP2 haploinsufficiency and the occurrence of valve defects in NF1-microdeleted patients. CONCLUSIONS: Overall, our findings indicate that ADAP2 has a role in heart development, and might be a reliable candidate gene for the occurrence of cardiovascular malformations in patients with NF1 microdeletion and, more generally, for the occurrence of a subset of congenital heart defects.


Assuntos
Anormalidades Cardiovasculares/genética , Anormalidades Craniofaciais/genética , Proteínas Ativadoras de GTPase/genética , Deficiência Intelectual/genética , Deficiências da Aprendizagem/genética , Neurofibromatoses/genética , Animais , Deleção Cromossômica , Cromossomos Humanos Par 17/genética , Modelos Animais de Doenças , Estudos de Associação Genética , Predisposição Genética para Doença , Coração/embriologia , Humanos , Camundongos , Morfogênese , Peixe-Zebra
12.
J Neurochem ; 127(1): 22-35, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23800350

RESUMO

Transcriptional dysregulation is a hallmark of Huntington's disease (HD) and one cause of this dysregulation is enhanced activity of the REST-mSIN3a-mSIN3b-CoREST-HDAC repressor complex, which silences transcription through REST binding to the RE1/NRSE silencer. Normally, huntingtin (HTT) prevents this binding, allowing expressing of REST target genes. Here, we aimed to identify HTT mimetics that disrupt REST complex formation in HD. From a structure-based virtual screening of 7 million molecules, we selected 94 compounds predicted to interfere with REST complex formation by targeting the PAH1 domain of mSIN3b. Primary screening using DiaNRSELuc8 cells revealed two classes of compounds causing a greater than two-fold increase in luciferase. In particular, quinolone-like compound 91 (C91) at a non-toxic nanomolar concentration reduced mSIN3b nuclear entry and occupancy at the RE1/NRSE within the Bdnf locus, and restored brain-derived neurotrophic factor (BDNF) protein levels in HD cells. The mRNA levels of other RE1/NRSE-regulated genes were similarly increased while non-REST-regulated genes were unaffected. C91 stimulated REST-regulated gene expression in HTT-knockdown Zebrafish and increased BDNF mRNA in the presence of mutant HTT. Thus, a combination of virtual screening and biological approaches can lead to compounds reducing REST complex formation, which may be useful in HD and in other pathological conditions.


Assuntos
Doença de Huntington/genética , Doença de Huntington/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transcrição Gênica/fisiologia , Animais , Animais Geneticamente Modificados , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proliferação de Células , Células Cultivadas , Imunoprecipitação da Cromatina , Proteínas Correpressoras , Embrião não Mamífero , Ensaio de Imunoadsorção Enzimática , Humanos , Proteína Huntingtina , Imuno-Histoquímica , Luciferases/metabolismo , Microinjeções , Modelos Moleculares , Proteínas do Tecido Nervoso/biossíntese , Reação em Cadeia da Polimerase , RNA Mensageiro/administração & dosagem , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Transcrição Gênica/genética , Transfecção , Peixe-Zebra
13.
Cancers (Basel) ; 15(22)2023 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-38001635

RESUMO

Lung carcinoids (LCs) comprise well-differentiated neuroendocrine tumors classified as typical (TCs) and atypical (ACs) carcinoids. Unfortunately, curative therapies remain elusive for metastatic LCs, which account for 25-30% of cases. This study evaluated the antitumor activity of axitinib (AXI), a second-generation tyrosine kinase inhibitor selectively targeting vascular endothelial growth factor receptors (VEGFR-1, VEGFR-2, VEGFR-3) in human lung TC (NCI-H727, UMC-11, NCI-H835) and AC (NCI-H720) cell lines. In vitro and in vivo (zebrafish) assays were performed following AXI treatment to gather several read-outs about cell viability, cell cycle, the secretion of proangiogenic factors, apoptosis, tumor-induced angiogenesis and migration. AXI demonstrated relevant antitumor activity in human LC cells, with pronounced effects observed in UMC-11 and NCI-H720, characterized by cell cycle perturbation and apoptosis induction. AXI significantly hindered tumor induced-angiogenesis in Tg(fli1a:EGFP)y1 zebrafish embryos implanted with all LC cell lines and also reduced the invasiveness of NCI-H720 cells, as well as the secretion of several proangiogenic factors. In conclusion, our study provides initial evidence supporting the potential anti-tumor activity of AXI in LC, offering a promising basis for future investigations in mammalian animal models and, eventually, progressing to clinical trials.

14.
Endocr Relat Cancer ; 30(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855330

RESUMO

Neuroendocrine tumors (NETs) are highly vascularized malignancies in which angiogenesis may entail cell proliferation and survival. Among the emerging compounds with antivascular properties, cabozantinib (CAB) appeared promising. We analyzed the antitumor activity of CAB against NETs utilizing in vitro and in vivo models. For cell cultures, we used BON-1, NCI-H727 and NCI-H720 cell lines. Cell viability was assessed by manual count coupled with quantification of cell death, performed through fluorescence-activated cell sorting analysis as propidium iodide exclusion assay. In addition, we investigated the modulation of the antiapoptotic myeloid cell leukemia 1 protein under CAB exposure, as a putative adaptive pro-survival mechanism, and compared the responses with sunitinib. The activity of CAB was also tested in mouse and zebrafish xenograft tumor models. Cabozantinib showed a dose-dependent and time-dependent effect on cell viability and proliferation in human NET cultures, besides a halting of cell cycle progression for endoduplication, never reported for other tyrosine kinase inhibitors. In a transplantable zebrafish model, CAB drastically inhibited NET-induced angiogenesis and migration of implanted cells through the embryo body. CAB showed encouraging activity in NETs, both in vitro and in vivo models. On this basis, we envisage future research to further investigate along these promising lines.


Assuntos
Tumores Neuroendócrinos , Peixe-Zebra , Humanos , Animais , Camundongos , Transdução de Sinais , Tumores Neuroendócrinos/patologia , Linhagem Celular Tumoral
15.
Cancers (Basel) ; 14(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36139603

RESUMO

Medullary thyroid carcinoma (MTC) is a neuroendocrine tumor arising from parafollicular C cells of the thyroid gland. In this preclinical study, we tested three tyrosine-kinase inhibitors (TKIs): SU5402, a selective inhibitor of fibroblast growth factor receptor (FGFR)-1 and vascular endothelial growth factor receptor (VEGFR)-2; sulfatinib, an inhibitor of FGFR-1 and VEGFR-1, -2, -3; and SPP86, a RET-specific inhibitor. The effects of these compounds were evaluated in vitro in two human MTC cell lines (TT and MZ-CRC-1), and in vivo using xenografts of MTC cells in zebrafish embryos. SU5402, sulfatinib and SPP86 decreased cell viability. Sulfatinib and SPP86 significantly induced apoptosis in both cell lines. Sulfatinib and SPP86 inhibited the migration of TT and MZCRC-1 cells, while SU5402 was able to inhibit migration only in TT cells. In vivo we observed a significant reduction in TT cell-induced angiogenesis in zebrafish embryos after incubation with sulfatinib and SPP86. In conclusion, sulfatinib and SPP86 displayed a relevant antitumor activity both in vitro and in vivo. Moreover, this work suggests the potential utility of targeting FGFR and VEGFR signaling pathways as an alternative therapy for MTC.

16.
EMBO Mol Med ; 14(5): e14364, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35266635

RESUMO

Invasive nonfunctioning (NF) pituitary neuroendocrine tumors (PitNETs) are non-resectable neoplasms associated with frequent relapses and significant comorbidities. As the current therapies of NF-PitNETs often fail, new therapeutic targets are needed. The observation that circulating angiopoietin-2 (ANGPT2) is elevated in patients with NF-PitNET and correlates with tumor aggressiveness prompted us to investigate the ANGPT2/TIE2 axis in NF-PitNETs in the GH3 PitNET cell line, primary human NF-PitNET cells, xenografts in zebrafish and mice, and in MENX rats, the only autochthonous NF-PitNET model. We show that PitNET cells express a functional TIE2 receptor and secrete bioactive ANGPT2, which promotes, besides angiogenesis, tumor cell growth in an autocrine and paracrine fashion. ANGPT2 stimulation of TIE2 in tumor cells activates downstream cell proliferation signals, as previously demonstrated in endothelial cells (ECs). Tie2 gene deletion blunts PitNETs growth in xenograft models, and pharmacological inhibition of Angpt2/Tie2 signaling antagonizes PitNETs in primary cell cultures, tumor xenografts in mice, and in MENX rats. Thus, the ANGPT2/TIE2 axis provides an exploitable therapeutic target in NF-PitNETs and possibly in other tumors expressing ANGPT2/TIE2. The ability of tumor cells to coopt angiogenic signals classically viewed as EC-specific expands our view on the microenvironmental cues that are essential for tumor progression.


Assuntos
Angiopoietina-2 , Neoplasias Hipofisárias , Angiopoietina-2/metabolismo , Animais , Carcinogênese , Células Endoteliais/metabolismo , Xenoenxertos , Humanos , Camundongos , Recidiva Local de Neoplasia , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia , Ratos , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Peixe-Zebra
17.
Cells ; 10(11)2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34831367

RESUMO

The insulin receptor isoform A (IR-A) plays an increasingly recognized role in fetal growth and tumor biology in response to circulating insulin and/or locally produced IGF2. This role seems not to be shared by the IR isoform B (IR-B). We aimed to dissect the specific impact of IR isoforms in modulating insulin signaling in triple negative breast cancer (TNBC) cells. We generated murine 4T1 TNBC cells deleted from the endogenous insulin receptor (INSR) gene and expressing comparable levels of either human IR-A or IR-B. We then measured IR isoform-specific in vitro and in vivo biological effects and transcriptome in response to insulin. Overall, the IR-A was more potent than the IR-B in mediating cell migration, invasion, and in vivo tumor growth. Transcriptome analysis showed that approximately 89% of insulin-stimulated transcripts depended solely on the expression of the specific isoform. Notably, in cells overexpressing IR-A, insulin strongly induced genes involved in tumor progression and immune evasion including chemokines and genes related to innate immunity. Conversely, in IR-B overexpressing cells, insulin predominantly induced the expression of genes primarily involved in the regulation of metabolic pathways and, to a lesser extent, tumor growth and angiogenesis.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Receptor de Insulina/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA-Seq , Receptor de Insulina/genética , Análise de Sobrevida , Transcriptoma/genética , Neoplasias de Mama Triplo Negativas/irrigação sanguínea , Neoplasias de Mama Triplo Negativas/genética , Peixe-Zebra
18.
Endocr Relat Cancer ; 27(6): R163-R176, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32252025

RESUMO

Neuroendocrine tumors (NETs) are a class of rare and heterogeneous neoplasms that originate from the neuroendocrine system. In several cases, these neoplasms can release bioactive hormones leading to characteristic clinical syndromes and hormonal dysregulations with detrimental impact on the quality of life and survival of these patients. Only few animal models are currently available to investigate pathogenesis, progression and functional syndromes in NETs and to identify new therapeutic strategies. The tropical teleost zebrafish (Danio rerio) is a popular vertebrate model system that offers unique advantages for the study of several biological processes, ranging from embryonic development to human diseases such as cancer. In this review, we summarize recent advances on zebrafish models for NET preclinical research that take advantage of modern genetic and transplantable technologies. In the future, these tools may have a role in the treatment decision-making and tertiary prevention of NETs.


Assuntos
Tumores Neuroendócrinos/patologia , Animais , Humanos , Peixe-Zebra
19.
Cancers (Basel) ; 12(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32932949

RESUMO

Multiple myeloma (MM) is an incurable plasma cell malignancy arising primarily within the bone marrow (BM). During MM progression, different modifications occur in the tumor cells and BM microenvironment, including the angiogenic shift characterized by the increased capability of endothelial cells to organize a network, migrate and express angiogenic factors, including vascular endothelial growth factor (VEGF). Here, we studied the functional outcome of the dysregulation of Notch ligands, Jagged1 and Jagged2, occurring during disease progression, on the angiogenic potential of MM cells and BM stromal cells (BMSCs). Jagged1-2 expression was modulated by RNA interference or soluble peptide administration, and the effects on the MM cell lines' ability to induce human pulmonary artery cells (HPAECs) angiogenesis or to indirectly increase the BMSC angiogenic potential was analyzed in vitro; in vivo validation was performed on a zebrafish model and MM patients' BM biopsies. Overall, our results indicate that the MM-derived Jagged ligands (1) increase the tumor cell angiogenic potential by directly triggering Notch activation in the HPAECs or stimulating the release of angiogenic factors, i.e., VEGF; and (2) stimulate the BMSCs to promote angiogenesis through VEGF secretion. The observed pro-angiogenic effect of Notch activation in the BM during MM progression provides further evidence of the potential of a therapy targeting the Jagged ligands.

20.
Ann Endocrinol (Paris) ; 80(3): 149-152, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31064661

RESUMO

Neuroendocrine tumors (NETs) are rare neoplasms whose incidence is increasing. NETs constitute a heterogeneous group of tumors. Their clinical features, functional properties, and clinical course are different on the basis of their site of origin. Due to the heterogeneity of these tumors, a coordinated multidisciplinary approach is required in these patients. However, medical doctor encounters many difficulties when providing care for patients with NETs. This review provides an overview of the state of the art of zebrafish model in the cancer research with a main focus on NETs.


Assuntos
Modelos Animais de Doenças , Transplante de Neoplasias , Tumores Neuroendócrinos , Peixe-Zebra , Animais , Biomarcadores Tumorais , Xenoenxertos , Humanos , Tumores Neuroendócrinos/fisiopatologia , Tumores Neuroendócrinos/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA