Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nucleic Acids Res ; 51(10): 4942-4958, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37021552

RESUMO

The DNA-glycosylase OGG1 oversees the detection and clearance of the 7,8-dihydro-8-oxoguanine (8-oxoG), which is the most frequent form of oxidized base in the genome. This lesion is deeply buried within the double-helix and its detection requires careful inspection of the bases by OGG1 via a mechanism that remains only partially understood. By analyzing OGG1 dynamics in the nucleus of living human cells, we demonstrate that the glycosylase constantly samples the DNA by rapidly alternating between diffusion within the nucleoplasm and short transits on the DNA. This sampling process, that we find to be tightly regulated by the conserved residue G245, is crucial for the rapid recruitment of OGG1 at oxidative lesions induced by laser micro-irradiation. Furthermore, we show that residues Y203, N149 and N150, while being all involved in early stages of 8-oxoG probing by OGG1 based on previous structural data, differentially regulate the sampling of the DNA and recruitment to oxidative lesions.


Assuntos
DNA Glicosilases , Humanos , Núcleo Celular/genética , Núcleo Celular/metabolismo , DNA/química , DNA Glicosilases/metabolismo , Reparo do DNA
2.
J Biol Chem ; 299(7): 104870, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37247759

RESUMO

Protein SUMOylation is a ubiquitylation-like post-translational modification (PTM) that is synthesized through an enzymatic cascade involving an E1 (SAE1:SAE2), an E2 (UBC9), and various E3 enzymes. In the final step of this process, the small ubiquitin-like modifier (SUMO) is transferred from the UBC9∼SUMO thioester onto a lysine residue of a protein substrate. This reaction can be accelerated by an E3 ligase. As the UBC9∼SUMO thioester is chemically unstable, a stable mimetic is desirable for structural studies of UBC9∼SUMO alone and in complex with a substrate and/or an E3 ligase. Recently, a strategy for generating a mimetic of the yeast E2∼SUMO thioester by mutating alanine 129 of Ubc9 to a lysine has been reported. Here, we reproduce and further investigate this approach using the human SUMOylation system and characterize the resulting mimetic of human UBC9∼SUMO1. We show that substituting lysine for alanine 129, but not for other active-site UBC9 residues, results in a UBC9 variant that is efficiently auto-SUMOylated. The auto-modification is dependent on cysteine 93 of UBC9, suggesting that it proceeds via this residue, through the same pathway as that for SUMOylation of substrates. The process is also partially dependent on aspartate 127 of UBC9 and accelerated by high pH, highlighting the importance of the substrate lysine protonation state for efficient SUMOylation. Finally, we present the crystal structure of the UBC9-SUMO1 molecule, which reveals the mimetic in an open conformation and its polymerization via the noncovalent SUMO-binding site on UBC9. Similar interactions could regulate UBC9∼SUMO in some cellular contexts.


Assuntos
Enzimas de Conjugação de Ubiquitina , Ubiquitina , Humanos , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina/metabolismo , Lisina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação
3.
Int J Mol Sci ; 21(6)2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32192183

RESUMO

DNA glycosylases are emerging as relevant pharmacological targets in inflammation, cancer and neurodegenerative diseases. Consequently, the search for inhibitors of these enzymes has become a very active research field. As a continuation of previous work that showed that 2-thioxanthine (2TX) is an irreversible inhibitor of zinc finger (ZnF)-containing Fpg/Nei DNA glycosylases, we designed and synthesized a mini-library of 2TX-derivatives (TXn) and evaluated their ability to inhibit Fpg/Nei enzymes. Among forty compounds, four TXn were better inhibitors than 2TX for Fpg. Unexpectedly, but very interestingly, two dithiolated derivatives more selectively and efficiently inhibit the zincless finger (ZnLF)-containing enzymes (human and mimivirus Neil1 DNA glycosylases hNeil1 and MvNei1, respectively). By combining chemistry, biochemistry, mass spectrometry, blind and flexible docking and X-ray structure analysis, we localized new TXn binding sites on Fpg/Nei enzymes. This endeavor allowed us to decipher at the atomic level the mode of action for the best TXn inhibitors on the ZnF-containing enzymes. We discovered an original inhibition mechanism for the ZnLF-containing Fpg/Nei DNA glycosylases by disulfide cyclic trimeric forms of dithiopurines. This work paves the way for the design and synthesis of a new structural class of inhibitors for selective pharmacological targeting of hNeil1 in cancer and neurodegenerative diseases.


Assuntos
DNA Glicosilases/antagonistas & inibidores , DNA Glicosilases/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Purinas/química , Purinas/farmacologia , Compostos de Sulfidrila/química , Compostos de Sulfidrila/farmacologia , Bactérias/enzimologia , Sítios de Ligação , Cristalografia por Raios X , Reparo do DNA , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Humanos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Ligação Proteica , Relação Estrutura-Atividade , Tioxantenos/química , Tioxantenos/farmacologia
4.
Nat Genet ; 39(7): 896-900, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17589509

RESUMO

Most agronomic traits of importance, whether physiological (such as nutrient use efficiency) or developmental (such as flowering time), are controlled simultaneously by multiple genes and their interactions with the environment. Here, we show that variation in sulfate content between wild Arabidopsis thaliana accessions Bay-0 and Shahdara is controlled by a major quantitative trait locus that results in a strong interaction with nitrogen availability in the soil. Combining genetic and biochemical results and using a candidate gene approach, we have cloned the underlying gene, showing how a single-amino acid substitution in a key enzyme of the assimilatory sulfate reduction pathway, adenosine 5'-phosphosulfate reductase, is responsible for a decrease in enzyme activity, leading to sulfate accumulation in the plant. This work illustrates the potential of natural variation as a source of new alleles of known genes, which can aid in the study of gene function and metabolic pathway regulation. Our new insights on sulfate assimilation may have an impact on sulfur fertilizer use and stress defense improvement.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Arabidopsis/genética , Variação Genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/fisiologia , Sulfatos/metabolismo , Proteínas de Arabidopsis/fisiologia , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/fisiologia , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Locos de Características Quantitativas
5.
Sci Rep ; 12(1): 7101, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501371

RESUMO

Liquid droplets of a host protein, formed by liquid-liquid phase separation, recruit guest proteins and provide functional fields. Recruitment into p53 droplets is similar between disordered and folded guest proteins, whereas the diffusion of guest proteins inside droplets depends on their structural types. In this study, to elucidate how the recruitment and diffusion properties of guest proteins are affected by a host protein, we characterized the properties of guest proteins in fused in sarcoma (FUS) droplets using single-molecule fluorescence microscopy in comparison with p53 droplets. Unlike p53 droplets, disordered guest proteins were recruited into FUS droplets more efficiently than folded guest proteins, suggesting physical exclusion of the folded proteins from the small voids of the droplet. The recruitment did not appear to depend on the physical parameters (electrostatic or cation-π) of guests, implying that molecular size exclusion limits intermolecular interaction-assisted uptake. The diffusion of disordered guest proteins was comparable to that of the host FUS, whereas that of folded proteins varied widely, similar to the results for host p53. The scaling exponent of diffusion highlights the molecular sieving of large folded proteins in droplets. Finally, we proposed a molecular recruitment and diffusion model for guest proteins in FUS droplets.


Assuntos
Proteína FUS de Ligação a RNA , Proteína Supressora de Tumor p53 , Difusão , Proteína FUS de Ligação a RNA/metabolismo , Imagem Individual de Molécula , Eletricidade Estática
6.
Sci Rep ; 11(1): 19323, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588591

RESUMO

Despite the continuous discovery of host and guest proteins in membraneless organelles, complex host-guest interactions hinder the understanding of the molecular grammar governing liquid-liquid phase separation. In this study, we characterized the localization and dynamic properties of guest proteins in liquid droplets using single-molecule fluorescence microscopy. Eighteen guest proteins of different sizes, structures, and oligomeric states were examined in host p53 liquid droplets. Recruitment did not significantly depend on the structural properties of the guest proteins, but was moderately correlated with their length, total charge, and number of R and Y residues. In contrast, the diffusion of disordered guest proteins was comparable to that of host p53, whereas that of folded proteins varied widely. Molecular dynamics simulations suggest that folded proteins diffuse within the voids of the liquid droplet while interacting weakly with neighboring host proteins, whereas disordered proteins adapt their structures to form tight interactions with the host proteins. Our study provides insights into the key molecular principles of the localization and dynamics of guest proteins in liquid droplets.


Assuntos
Condensados Biomoleculares/química , Proteínas Intrinsicamente Desordenadas/química , Organelas/química , Condensados Biomoleculares/metabolismo , Condensados Biomoleculares/ultraestrutura , Microscopia de Fluorescência , Simulação de Dinâmica Molecular , Mutação , Organelas/ultraestrutura , Transição de Fase , Dobramento de Proteína , Multimerização Proteica/genética , Imagem Individual de Molécula , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/ultraestrutura
7.
Plant J ; 57(3): 426-35, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18826430

RESUMO

Nitrate is an essential nutrient, and is involved in many adaptive responses of plants, such as localized proliferation of roots, flowering or stomatal movements. How such nitrate-specific mechanisms are regulated at the molecular level is poorly understood. Although the Arabidopsis ANR1 transcription factor appears to control stimulation of lateral root elongation in response to nitrate, no regulators of nitrate assimilation have so far been identified in higher plants. Legume-specific symbiotic nitrogen fixation is under the control of the putative transcription factor, NIN, in Lotus japonicus. Recently, the algal homologue NIT2 was found to regulate nitrate assimilation. Here we report that Arabidopsis thaliana NIN-like protein 7 (NLP7) knockout mutants constitutively show several features of nitrogen-starved plants, and that they are tolerant to drought stress. We show that nlp7 mutants are impaired in transduction of the nitrate signal, and that the NLP7 expression pattern is consistent with a function of NLP7 in the sensing of nitrogen. Translational fusions with GFP showed a nuclear localization for the NLP7 putative transcription factor. We propose NLP7 as an important element of the nitrate signal transduction pathway and as a new regulatory protein specific for nitrogen assimilation in non-nodulating plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Nitratos/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutação , Nitrogênio/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA de Plantas/genética , Estresse Fisiológico , Fatores de Transcrição/genética
8.
Viruses ; 12(9)2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867106

RESUMO

The non-structural protein NS1 of influenza A viruses is an RNA-binding protein of which its activities in the infected cell contribute to the success of the viral cycle, notably through interferon antagonism. We have previously shown that NS1 strongly binds RNA aptamers harbouring virus-specific sequence motifs (Marc et al., Nucleic Acids Res. 41, 434-449). Here, we started out investigating the putative role of one particular virus-specific motif through the phenotypic characterization of mutant viruses that were genetically engineered from the parental strain WSN. Unexpectedly, our data did not evidence biological importance of the putative binding of NS1 to this specific motif (UGAUUGAAG) in the 3'-untranslated region of its own mRNA. Next, we sought to identify specificity determinants in the NS1-RNA interaction through interaction assays in vitro with several RNA ligands and through solving by X-ray diffraction the 3D structure of several complexes associating NS1's RBD with RNAs of various affinities. Our data show that the RBD binds the GUAAC motif within double-stranded RNA helices with an apparent specificity that may rely on the sequence-encoded ability of the RNA to bend its axis. On the other hand, we showed that the RBD binds to the virus-specific AGCAAAAG motif when it is exposed in the apical loop of a high-affinity RNA aptamer, probably through a distinct mode of interaction that still requires structural characterization. Our data are consistent with more than one mode of interaction of NS1's RBD with RNAs, recognizing both structure and sequence determinants.


Assuntos
Vírus da Influenza A Subtipo H1N1/química , Vírus da Influenza A Subtipo H7N1/química , RNA Viral/química , RNA/química , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Regiões 3' não Traduzidas , Animais , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Sequência de Bases , Linhagem Celular , Humanos , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Domínios Proteicos , RNA/metabolismo , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Técnica de Seleção de Aptâmeros
9.
Plant J ; 50(4): 605-14, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17425712

RESUMO

Pectins are a family of complex cell-wall polysaccharides, the biosynthesis of which remains poorly understood. We identified dwarf mutants with reduced cell adhesion at a novel locus, QUASIMODO2 (QUA2). qua2-1 showed a 50% reduction in homogalacturonan (HG) content compared with the wild type, without affecting other cell-wall polysaccharides. The remaining HG in qua2-1 showed an unaltered degree of methylesterification. Positional cloning and GFP fusions showed that QUA2, consistent with a role in HG synthesis, encodes a Golgi-localized protein. In contrast to QUA1, another Golgi-localized protein required for HG-synthesis, QUA2 does not show sequence similarity to glycosyltransferases, but instead contains a putative methyltransferase (MT) domain. The Arabidopsis genome encodes 29 QUA2-related proteins. Interestingly, the transcript profiles of QUA1 and QUA2 are correlated and other pairs of QUA1 and QUA2 homologues with correlated transcript profiles can be identified. Together, the results lead to the hypothesis that QUA2 is a pectin MT, and that polymerization and methylation of homogalacturonan are interdependent reactions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complexo de Golgi/metabolismo , Metiltransferases/metabolismo , Pectinas/biossíntese , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Imunofluorescência , Complexo de Golgi/enzimologia , Proteínas de Fluorescência Verde/genética , Metiltransferases/genética , Microscopia Confocal , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Theor Appl Genet ; 110(4): 742-53, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15678326

RESUMO

Arabidopsis thaliana provides a scientifically attractive and simple model for studying root growth and architecture and, subsequently, for discovering new genes involved in the control of these characters in plants. We have used the natural variation available in Arabidopsis accessions and mapped quantitative trait loci (QTLs) for primary root length (PRL), lateral root number (LRN) and density (LRD) and for total length of the lateral root system (LRL) in the Bay-0 x Shahdara population. Total phenotypic variation was very large, and despite the importance of the environmental component we were able to map 13 QTLs and one epistatic interaction between QTLs. Our results highlight the biological relevance and genetic control of lateral root density in this material. We were also able to show that variation in the extent of the lateral root system depends mainly on the growth of the existing lateral roots rather than in a change in LRN. Factors controlling lateral root growth seemed to have no major effect on primary root growth. Moreover, Shahdara QTL alleles always increased the length of the lateral roots, which may be taken as an adaptation to its very dry natural environment in Tadjikistan. A QTL for PRL was confirmed using a type of near-isogenic line called a heterogeneous inbred family (HIF), and this QTL is a candidate for further fine-mapping and cloning.


Assuntos
Arabidopsis/genética , Raízes de Plantas/crescimento & desenvolvimento , Locos de Características Quantitativas , Arabidopsis/crescimento & desenvolvimento , Cruzamento , Variação Genética , Fenótipo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA