Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Clin Infect Dis ; 74(1): 95-104, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33693561

RESUMO

BACKGROUND: Inflammation is associated with end-organ disease and mortality for people with human immunodeficiency virus (PWH). Ruxolitinib, a Jak 1/2 inhibitor, reduces systemic inflammation for individuals without human immunodeficiency virus (HIV) and HIV reservoir markers ex vivo. The goal of this trial was to determine safety and efficacy of ruxolitinib for PWH on antiretroviral therapy (ART). METHODS: AIDS Clinical Trials Group (ACTG) A5336 was an open-label, multisite, randomized controlled trial (RCT). Participants were randomly assigned (2:1) using centralized software to ruxolitinib (10 mg twice daily) plus stable ART for 5 weeks vs ART alone, stratified by efavirenz use. Eligible participants were suppressed on ART for ≥2 years, without comorbidities, and had >350 CD4+ T cells/µL. Primary endpoints were premature discontinuation, safety events, and change in plasma interleukin 6 (IL-6). Secondary endpoints included other measures of inflammation/immune activation and HIV reservoir. RESULTS: Sixty participants were enrolled from 16 May 2016 to 10 January 2018. Primary safety events occurred in 2.5% (1 participant) for ruxolitinib and 0% for controls (P = .67). Three participants (7.5%) prematurely discontinued ruxolitinib. By week 5, differences in IL-6 (mean fold change [FC], 0.93 vs 1.10; P = .18) and soluble CD14 (mean FC, 0.96 vs 1.08; relative FC, 0.96 [90% confidence interval {CI}, .90-1.02]) levels for ruxolitinib vs controls was observed. Ruxolitinib reduced CD4+ T cells expressing HLA-DR/CD38 (mean difference, -0.34% [90% CI, -.66% to -.12%]) and Bcl-2 (mean difference, -3.30% [90% CI, -4.72% to -1.87%]). CONCLUSIONS: In this RCT of healthy, virologically suppressed PWH on ART, ruxolitinib was well-tolerated. Baseline IL-6 levels were normal and showed no significant reduction. Ruxolitinib significantly decreased markers of immune activation and cell survival. Future studies of Jak inhibitors should target PWH with residual inflammation despite suppressive ART. CLINICAL TRIALS REGISTRATION: NCT02475655.


Assuntos
Infecções por HIV , Pirimidinas , Adulto , HIV , Humanos , Nitrilas/uso terapêutico , Pirazóis , Pirimidinas/uso terapêutico
2.
Clin Infect Dis ; 72(7): 1247-1250, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32597466

RESUMO

Hyperinflammation is associated with increased mortality in coronavirus disease 2019 (COVID-19). In this retrospective, uncontrolled patient cohort with moderate -severe COVID-19, treatment with baricitinib plus hydroxychloroquine was associated with recovery in 11 of 15 patients. Baricitinib for the treatment of COVID-19 should be further investigated in randomized, controlled clinical trials.


Assuntos
Tratamento Farmacológico da COVID-19 , Antivirais/uso terapêutico , Azetidinas , Humanos , Purinas , Pirazóis , Estudos Retrospectivos , SARS-CoV-2 , Sulfonamidas , Resultado do Tratamento
3.
J Neurovirol ; 26(6): 838-845, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32901392

RESUMO

Despite combined antiretroviral therapy (cART), HIV infection in the CNS persists with reported increases in activation of macrophages (MΦ), microglia, and surrounding astrocytes/neurons, conferring HIV-induced inflammation. Chronic inflammation results in HIV-associated neurocognitive disorders (HAND) with reported occurrence of up to half of individuals with HIV infection. The existing HAND mouse model used by laboratories including ours, and the effect of novel agents on its pathology present with labor-intensive and time-consuming limitations since brain sections and immunohistochemistry assays have to be performed and analyzed. A novel flow cytometry-based system to objectively quantify phenotypic effects of HIV using a SCID mouse HAND model was developed which demonstrated that the HIV-infected mice had significant increases in astrogliosis, loss of neuronal dendritic marker, activation of murine microglia, and human macrophage explants compared to uninfected control mice. HIV p24 could also be quantified in the brains of the infected mice. Correlation of these impairments with HIV-induced brain inflammation and previous behavioral abnormalities studies in mice suggests that this model can be used as a fast and relevant throughput methodology to quantify preclinical testing of novel treatments for HAND.


Assuntos
Encéfalo/metabolismo , Disfunção Cognitiva/genética , Modelos Animais de Doenças , Gliose/genética , Infecções por HIV/genética , HIV-1/genética , Animais , Astrócitos/metabolismo , Astrócitos/virologia , Biomarcadores/metabolismo , Encéfalo/virologia , Disfunção Cognitiva/complicações , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/virologia , Expressão Gênica , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/complicações , Gliose/metabolismo , Gliose/virologia , Proteína do Núcleo p24 do HIV/genética , Proteína do Núcleo p24 do HIV/metabolismo , Infecções por HIV/complicações , Infecções por HIV/metabolismo , Infecções por HIV/virologia , HIV-1/metabolismo , HIV-1/patogenicidade , Humanos , Inflamação , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/metabolismo , Macrófagos/metabolismo , Macrófagos/virologia , Masculino , Camundongos , Camundongos SCID , Microglia/metabolismo , Microglia/virologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/metabolismo , Neurônios/virologia , Fenótipo
4.
J Neuroinflammation ; 16(1): 182, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31561750

RESUMO

BACKGROUND: Since HIV-associated neurocognitive disorders (HANDs) occur in up to half of HIV-positive individuals, even with combined antiretroviral therapy (cART), adjunctive therapies are needed. Chronic CNS inflammation contributes to HAND and HIV encephalitis (HIVE). Baricitinib is a JAK 1/2 inhibitor approved in the USA, EU, and Japan for rheumatoid arthritis, demonstrating potent inhibition of IL-6, D-dimer, CRP, TNF-α, IFN-α/ß, and other pro-inflammatory cytokines. METHODS: Our modified murine HAND model was used to evaluate the ability of baricitinib to cross the blood-brain barrier (BBB) and modulate monocyte/macrophage-driven HAND. Severity of HAND was measured by assessing cognitive performance of low- and high-dose baricitinib treated versus untreated HAND mice. The severity of brain neuroinflammation was evaluated in these mouse groups after flow cytometric analyses. We also assessed the ability of baricitinib to block events in myeloid and lymphoid cells in vitro that may undergird the persistence of HIV in the central nervous system (CNS) in primary human macrophages (Mϕ) and lymphocytes including HIV replication, HIV-induced activation, reservoir expansion, and reservoir maintenance. RESULTS: In vivo, both doses of 10 and 50 mg/kg qd baricitinib crossed the BBB and reversed behavioral abnormalities conferred by HIV infection. Moreover, baricitinib significantly reduced HIV-induced neuroinflammation marked by glial activation: activated microglia (MHCII+/CD45+) and astrogliosis (GFAP). Baricitinib also significantly reduced the percentage of p24+ human macrophages in mouse brains (p < 0.05 versus HAND mice; t test). In vitro, baricitinib significantly reduced markers of persistence, reservoir size, and reseeding in Mϕ. CONCLUSION: These results show that blocking the JAK/STAT pathway reverses cognitive deficits and curtails inflammatory markers in HAND in mice. Our group recently reported safety and tolerability of ruxolitinib in HIV-infected individuals (Marconi et al., Safety, tolerability and immunologic activity of ruxolitinib added to suppressive ART, 2019), underscoring potential safety and utility of JAK inhibitors for additional human trials. The data reported herein coupled with our recent human trial with JAK inhibitors provide compelling preclinical data and impetus for considering a trial of baricitinib in HAND individuals treated with cART to reverse cognitive deficits and key events driving viral persistence.


Assuntos
Complexo AIDS Demência/patologia , Complexo AIDS Demência/virologia , Azetidinas/farmacologia , Sulfonamidas/farmacologia , Ativação Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos SCID , Purinas , Pirazóis , Latência Viral/efeitos dos fármacos
5.
PLoS Pathog ; 13(12): e1006740, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29267399

RESUMO

Despite advances in the treatment of HIV infection with ART, elucidating strategies to overcome HIV persistence, including blockade of viral reservoir establishment, maintenance, and expansion, remains a challenge. T cell homeostasis is a major driver of HIV persistence. Cytokines involved in regulating homeostasis of memory T cells, the major hub of the HIV reservoir, trigger the Jak-STAT pathway. We evaluated the ability of tofacitinib and ruxolitinib, two FDA-approved Jak inhibitors, to block seeding and maintenance of the HIV reservoir in vitro. We provide direct demonstration for involvement of the Jak-STAT pathway in HIV persistence in vivo, ex vivo, and in vitro; pSTAT5 strongly correlates with increased levels of integrated viral DNA in vivo, and in vitro Jak inhibitors reduce the frequency of CD4+ T cells harboring integrated HIV DNA. We show that Jak inhibitors block viral production from infected cells, inhibit γ-C receptor cytokine (IL-15)-induced viral reactivation from latent stores thereby preventing transmission of infectious particles to bystander activated T cells. These results show that dysregulation of the Jak-STAT pathway is associated with viral persistence in vivo, and that Jak inhibitors target key events downstream of γ-C cytokine (IL-2, IL-7 and IL-15) ligation to their receptors, impacting the magnitude of the HIV reservoir in all memory CD4 T cell subsets in vitro and ex vivo. Jak inhibitors represent a therapeutic modality to prevent key events of T cell activation that regulate HIV persistence and together, specific, potent blockade of these events may be integrated to future curative strategies.


Assuntos
Fármacos Anti-HIV/farmacologia , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/virologia , Inibidores de Janus Quinases/farmacologia , Latência Viral/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Células Cultivadas , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Nitrilas , Piperidinas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Replicação Viral/efeitos dos fármacos
6.
Retrovirology ; 15(1): 69, 2018 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-30316304

RESUMO

BACKGROUND: SAM domain and HD domain containing protein 1 (SAMHD1) is a host anti-HIV-1 restriction factor known to suppress viral reverse transcription in nondividing myeloid cells by its dNTP triphosphorylase activity that depletes cellular dNTPs. However, HIV-2 and some SIV strains rapidly replicate in macrophages due to their accessory protein, viral protein X (Vpx), which proteosomally degrades SAMHD1 and elevates dNTP levels. Endogenous reverse transcription (ERT) of retroviruses is the extra-cellular reverse transcription step that partially synthesizes proviral DNAs within cell-free viral particles before the viruses infect new cells. ERT activity utilizes dNTPs co-packaged during budding from the virus-producing cells, and high ERT activity is known to enhance HIV-1 infectivity in nondividing cells. Here, since Vpx elevates cellular dNTP levels in macrophages, we hypothesize that HIV-2 should contain higher ERT activity than HIV-1 in macrophages, and that the Vpx-mediated dNTP elevation should enhance both ERT activity and infectivity of HIV-1 particles produced in macrophages. RESULTS: Here, we demonstrate that HIV-2 produced from human primary monocyte derived macrophages displays higher ERT activity than HIV-1 produced from macrophages. Also, HIV-1 particles produced from macrophages treated with virus like particles (VLPs) containing Vpx, Vpx (+), displayed large increases of ERT activity with the enhanced copy numbers of early, middle and late reverse transcription products within the viral particles, compared to the viruses produced from macrophages treated with Vpx (-) VLPs. Furthermore, upon the infection with an equal p24 amount to fresh macrophages, the viruses produced from the Vpx (+) VLP treated macrophages demonstrated higher infectivity than the viruses from the Vpx (-) VLP treated macrophages. CONCLUSIONS: This finding identifies the viral ERT step as an additional step of HIV-1 replication cycle that SAMHD1 restricts in nondividing myeloid target cells.


Assuntos
HIV-1/genética , HIV-2/genética , Macrófagos/virologia , Transcrição Reversa/genética , Proteína 1 com Domínio SAM e Domínio HD/genética , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Células Cultivadas , Citoplasma/química , Desoxirribonucleotídeos/análise , HIV-1/fisiologia , HIV-2/fisiologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/farmacologia , Vírion , Replicação Viral
7.
Tetrahedron Lett ; 58(7): 642-644, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28163339

RESUMO

Herein, we report the synthesis of novel 2',2',3',3'-tetrafluorinated nucleoside analogs along with their phosphoramidate prodrugs. A tetrafluoro ribose moiety was coupled with different Boc/benzoyl-protected nucleobases under Mitsunobu conditions. After deprotection, tetrafluorinated nucleosides 13b, 14b, 20b-22b were reacted with phenyl-(isopropoxy-L-alaninyl)-phosphorochloridate to afford corresponding monophosphate prodrugs 24b-28b. All synthesized compounds were evaluated against several DNA and RNA viruses including HIV, HBV, HCV, Ebola and Zika viruses.

8.
Neurobiol Dis ; 92(Pt B): 137-43, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26851503

RESUMO

A hallmark of persistent HIV-1 infection in the central nervous system is increased activation of mononuclear phagocytes and surrounding astrogliosis, conferring persistent HIV-induced inflammation. This inflammation is believed to result in neuronal dysfunction and the clinical manifestations of HIV-associated neurocognitive disorders (HAND). The Jak/STAT pathway is activated in macrophages/myeloid cells upon HIV-1 infection, modulating many pro-inflammatory pathways that result in HAND, thereby representing an attractive cellular target. Thus, the impact of ruxolitinib, a Janus Kinase (Jak) 1/2 inhibitor that is FDA approved for myelofibrosis and polycythemia vera, was assessed for its potential to inhibit HIV-1 replication in macrophages and HIV-induced activation in monocytes/macrophages in culture. In addition, a murine model of HIV encephalitis (HIVE) was used to assess the impact of ruxolitinib on histopathological features of HIVE, brain viral load, as well as its ability to penetrate the blood-brain-barrier (BBB). Ruxolitinib was found to inhibit HIV-1 replication in macrophages, HIV-induced activation of monocytes (CD14/CD16) and macrophages (HLA-DR, CCR5, and CD163) without apparent toxicity. In vivo, systemically administered ruxolitinib was detected in the brain during HIVE in SCID mice and markedly inhibited astrogliosis. Together, these data indicate that ruxolitinib reduces HIV-induced activation and infiltration of monocytes/macrophages in vitro, reduces the replication of HIV in vitro, penetrates the BBB when systemically administered in mice and reduces astrogliosis in the brains of mice with HIVE. These data suggest that ruxolitinib will be useful as a novel therapeutic to treat humans with HAND.


Assuntos
Antivirais/farmacologia , Encefalite Viral/tratamento farmacológico , Infecções por HIV/tratamento farmacológico , Inibidores de Janus Quinases/farmacologia , Pirazóis/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Astrócitos/virologia , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/virologia , Modelos Animais de Doenças , Encefalite Viral/metabolismo , Encefalite Viral/patologia , Gliose/tratamento farmacológico , Gliose/metabolismo , Gliose/patologia , Gliose/virologia , Infecções por HIV/metabolismo , Infecções por HIV/patologia , HIV-1/efeitos dos fármacos , HIV-1/fisiologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/virologia , Masculino , Camundongos , Monócitos/efeitos dos fármacos , Monócitos/virologia , Nitrilas , Pirimidinas , Tenofovir/farmacologia
9.
Antimicrob Agents Chemother ; 58(4): 1977-86, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24419350

RESUMO

The JAK-STAT pathway is activated in both macrophages and lymphocytes upon human immunodeficiency virus type 1 (HIV-1) infection and thus represents an attractive cellular target to achieve HIV suppression and reduced inflammation, which may impact virus sanctuaries. Ruxolitinib and tofacitinib are JAK1/2 inhibitors that are FDA approved for rheumatoid arthritis and myelofibrosis, respectively, but their therapeutic application for treatment of HIV infection was unexplored. Both drugs demonstrated submicromolar inhibition of infection with HIV-1, HIV-2, and a simian-human immunodeficiency virus, RT-SHIV, across primary human or rhesus macaque lymphocytes and macrophages, with no apparent significant cytotoxicity at 2 to 3 logs above the median effective antiviral concentration. Combination of tofacitinib and ruxolitinib increased the efficacy by 53- to 161-fold versus that observed for monotherapy, respectively, and each drug applied alone to primary human lymphocytes displayed similar efficacy against HIV-1 containing various polymerase substitutions. Both drugs inhibited virus replication in lymphocytes stimulated with phytohemagglutinin (PHA) plus interleukin-2 (IL-2), but not PHA alone, and inhibited reactivation of latent HIV-1 at low-micromolar concentrations across the J-Lat T cell latency model and in primary human central memory lymphocytes. Thus, targeted inhibition of JAK provided a selective, potent, and novel mechanism to inhibit HIV-1 replication in lymphocytes and macrophages, replication of drug-resistant HIV-1, and reactivation of latent HIV-1 and has the potential to reset the immunologic milieu in HIV-infected individuals.


Assuntos
HIV-1/efeitos dos fármacos , Piperidinas/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Células Cultivadas , Infecções por HIV/prevenção & controle , Humanos , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 2/antagonistas & inibidores , Linfócitos/virologia , Macaca mulatta , Macrófagos/virologia , Nitrilas
10.
Neurotherapeutics ; 21(2): e00329, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38388224

RESUMO

Cognitive impairment remains a persistent challenge in people living with HIV (PWLH) despite antiretroviral therapy (ART) due to ART's inability to eliminate brain HIV. HIV-induced cognitive dysfunction results from immune dysregulation, ongoing neuroinflammation, and the continuous virus presence, collectively contributing to cognitive deficits. Therefore, adjunctive therapies are needed to reduce cerebral HIV reservoirs, mitigate neuroinflammation, and impede cognitive dysfunction progression. Our study focused on Honokiol, known for its anti-inflammatory and neuroprotective properties, in an experimental mouse model simulating HIV-induced cognitive dysfunction. Using Honokiol Hexafluoro (HH), a synthetic analogue, we comprehensively evaluated its potential to ameliorate cognitive dysfunction and cerebral pathology in HIV-associated cognitive dysfunction. Our findings showed that HH treatment effectively reversed HIV-induced cognitive dysfunction, concurrently suppressing astrocyte activation, restoring neuronal dendritic arborization, and reducing microglial activation. Furthermore, HH remodeled the metabolic profile of HIV-infected human monocyte-derived macrophages, resulting in decreased activation and the promotion of a quiescent state in vitro.


Assuntos
Compostos Alílicos , Compostos de Bifenilo , Infecções por HIV , Fenóis , Humanos , Camundongos , Animais , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Infecções por HIV/patologia , Doenças Neuroinflamatórias , Camundongos SCID , Macrófagos
11.
Neurotherapeutics ; : e00373, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38749843

RESUMO

We evaluated the HIV-1 DNA reservoir in peripheral blood mononuclear cells (PBMC) and cerebrospinal fluid (CSF) in people with HIV (PWH) and associations to cognitive dysfunction. Using the intact proviral DNA assay (IPDA), an emerging technique to identify provirus that may be the source of viral rebound, we assessed HIV DNA in CSF and PBMC in PWH regardless of antiretroviral therapy (ART). CSF was used as a sampling surrogate for the central nervous system (CNS) as opposed to tissue. IDPA results (3' defective, 5' defective, and intact HIV DNA) were analyzed by compartment (Wilcoxon signed rank; matched and unmatched pairs). Cognitive performance, measured via a battery of nine neuropsychological (NP) tests, were analyzed for correlation to HIV DNA (Spearman's rho). 11 CSF and 8 PBMC samples from PWH were evaluated both unmatched and matched. Total CSF HIV DNA was detectable in all participants and was significantly higher than in matched PBMCs (p â€‹= â€‹0.0039). Intact CSF HIV DNA was detected in 7/11 participants and correlated closely with those in PBMCs but tended to be higher in CSF than in PBMC. CSF HIV DNA did not correlate with global NP performance, but higher values did correlate with worse executive function (p â€‹= â€‹0.0440). Intact HIV DNA is frequently present in the CSF of PWH regardless of ART. This further supports the presence of an HIV CNS reservoir and provides a method to study CNS reservoirs during HIV cure studies. Larger studies are needed to evaluate relationships with CNS clinical outcomes.

12.
Antimicrob Agents Chemother ; 57(3): 1262-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23263005

RESUMO

Understanding the cellular pharmacology of antiretroviral agents in macrophages and subsequent correlation with antiviral potency provides a sentinel foundation for definition of the dynamics between antiretroviral agents and viral reservoirs across multiple cell types, with the goal of eradication of HIV-1 from these cells. Various clinically relevant nucleoside antiviral agents, and the integrase inhibitor raltegravir, were selected for this study. The intracellular concentrations of the active metabolites of the nucleoside analogs were found to be 5- to 140-fold lower in macrophages than in lymphocytes, and their antiviral potency was significantly lower in macrophages constitutively activated with macrophage colony-stimulating factor (M-CSF) during acute infection than in resting macrophages (EC(50), 0.4 to 9.42 µM versus 0.03 to 0.4 µM, respectively). Although tenofovir-treated cells displayed significantly lower intracellular drug levels than cells treated with its prodrug, tenofovir disoproxil fumarate, the levels of tenofovir-diphosphate for tenofovir-treated cells were similar in lymphocytes and macrophages. Raltegravir also displayed significantly lower intracellular concentrations in macrophages than in lymphocytes, independent of the activation state, but had similar potencies in resting and activated macrophages. These data underscore the importance of delivering adequate levels of drug to macrophages to reduce and eradicate HIV-1 infection.


Assuntos
Adenina/análogos & derivados , Adenina/farmacologia , Fármacos Anti-HIV/farmacologia , HIV-1/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Organofosfonatos/farmacologia , Pirrolidinonas/farmacologia , Transporte Biológico , Inibidores de Integrase de HIV/farmacologia , HIV-1/enzimologia , HIV-1/crescimento & desenvolvimento , Humanos , Linfócitos/virologia , Ativação de Macrófagos/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/virologia , Especificidade de Órgãos , Cultura Primária de Células , Raltegravir Potássico , Inibidores da Transcriptase Reversa/farmacologia , Tenofovir
13.
Front Immunol ; 14: 1281744, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38299150

RESUMO

To improve the efficacy of immune checkpoint inhibitors (ICIs) for cancer treatment, various strategies, including combination therapies with repurposed drugs, are being explored. Several readily available interventions with potential to enhance programmed death 1 (PD-1) blockade have been identified. However, these interventions often remain overlooked due to the lack of financial incentives for their development, making them financial orphans. This review summarizes current knowledge regarding off-label drugs, supplements, and other readily available interventions that could improve the efficacy of PD-1 blockade. The summary of each intervention includes the proposed mechanism of action for combination with checkpoint inhibitors and data from animal and human studies. Additionally, we include summaries of common interventions to be avoided by patients on PD-1 blockade. Finally, we present approaches for conducting further studies in patients, with the aim of expediting the clinical development of these interventions. We strive to increase awareness of readily available combination therapies that may advance cancer immunotherapy and help patients today.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Animais , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Receptor de Morte Celular Programada 1 , Neoplasias/tratamento farmacológico , Terapia Combinada
14.
Front Cell Neurosci ; 17: 1130938, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37206666

RESUMO

Depression and neurocognitive disorder continue to be the major neuropsychiatric disorders affecting persons with HIV (PWH). The prevalence of major depressive disorder is two to fourfold higher among PWH than the general population (∼6.7%). Prevalence estimates of neurocognitive disorder among PWH range from 25 to over 47% - depending upon the definition used (which is currently evolving), the size of the test battery employed, and the demographic and HIV disease characteristics of the participants included, such as age range and sex distribution. Both major depressive disorder and neurocognitive disorder also result in substantial morbidity and premature mortality. However, though anticipated to be relatively common, the comorbidity of these two disorders in PWH has not been formally studied. This is partly due to the clinical overlap of the neurocognitive symptoms of these two disorders. Both also share neurobehavioral aspects - particularly apathy - as well as an increased risk for non-adherence to antiretroviral therapy. Shared pathophysiological mechanisms potentially explain these intersecting phenotypes, including neuroinflammatory, vascular, and microbiomic, as well as neuroendocrine/neurotransmitter dynamic mechanisms. Treatment of either disorder affects the other with respect to symptom reduction as well as medication toxicity. We present a unified model for the comorbidity based upon deficits in dopaminergic transmission that occur in both major depressive disorder and HIV-associated neurocognitive disorder. Specific treatments for the comorbidity that decrease neuroinflammation and/or restore associated deficits in dopaminergic transmission may be indicated and merit study.

15.
J Biol Chem ; 286(28): 25047-55, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21454906

RESUMO

Terminally differentiated/non-dividing macrophages contain extremely low cellular dNTP concentrations (20-40 nm), compared with activated CD4(+) T cells (2-5 µm). However, our LC-MS/MS study revealed that the non-canonical dUTP concentration (2.9 µm) is ∼60 times higher than TTP in macrophages, whereas the concentrations of dUTP and TTP in dividing human primary lymphocytes are very similar. Specifically, we evaluated the contribution of HIV-1 reverse transcriptase to proviral DNA uracilation under the physiological conditions found in HIV-1 target cells. Indeed, biochemical simulation of HIV-1 reverse transcription demonstrates that HIV-1 RT efficiently incorporates dUTP in the macrophage nucleotide pools but not in the T cell nucleotide pools. Measurement of both pre-steady state and steady state kinetic parameters of dUTP incorporation reveals minimal selectivity of HIV-1 RT for TTP over dUTP, implying that the cellular dUTP/TTP ratio determines the frequency of HIV-1 RT-mediated dUTP incorporation. The RT of another lentivirus, simian immunodeficiency virus, also displays efficient dUTP incorporation in the dNTP/dUTP pools found in macrophages but not in T cells. Finally, 2',3'-dideoxyuridine was inhibitory to HIV-1 proviral DNA synthesis in macrophages but not in T cells. The data presented demonstrates that the non-canonical dUTP was abundant relative to TTP, and efficiently incorporated during HIV-1 reverse transcription, particularly in non-dividing macrophages.


Assuntos
DNA Viral/biossíntese , Transcriptase Reversa do HIV/metabolismo , HIV-1/enzimologia , Macrófagos/metabolismo , Provírus/metabolismo , Transcrição Reversa/fisiologia , Uridina Trifosfato/metabolismo , Células Cultivadas , Humanos , Cinética , Vírus da Imunodeficiência Símia/enzimologia
16.
Microorganisms ; 10(11)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36422314

RESUMO

Neurocognitive impairment (NCI) associated with HIV infection of the brain impacts a large proportion of people with HIV (PWH) regardless of antiretroviral therapy (ART). While the number of PWH and severe NCI has dropped considerably with the introduction of ART, the sole use of ART is not sufficient to prevent or arrest NCI in many PWH. As the HIV field continues to investigate cure strategies, adjunctive therapies are greatly needed. HIV imaging, cerebrospinal fluid, and pathological studies point to the presence of continual inflammation, and the presence of HIV RNA, DNA, and proteins in the brain despite ART. Clinical trials exploring potential adjunctive therapeutics for the treatment of HIV NCI over the last few decades have had limited success. Ideally, future research and development of novel compounds need to address both the HIV replication and neuroinflammation associated with HIV infection in the brain. Brain mononuclear phagocytes (MPs) are the primary instigators of inflammation and HIV protein expression; therefore, adjunctive treatments that act on MPs, such as immunomodulating agents, look promising. In this review, we will highlight recent developments of innovative therapies and discuss future approaches for HIV NCI treatment.

17.
Front Immunol ; 13: 1033672, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36569952

RESUMO

B cell lymphoma 2 (BCL-2) family proteins are involved in the mitochondrial apoptotic pathway and are key modulators of cellular lifespan, which is dysregulated during human immunodeficiency virus type 1 (HIV-1) and other viral infections, thereby increasing the lifespan of cells harboring virus, including the latent HIV-1 reservoir. Long-lived cells harboring integrated HIV-1 DNA is a major barrier to eradication. Strategies reducing the lifespan of reservoir cells could significantly impact the field of cure research, while also providing insight into immunomodulatory strategies that can crosstalk to other viral infections. Venetoclax is a first-in-class orally bioavailable BCL-2 homology 3 (BH3) mimetic that recently received Food and Drug Administration (FDA) approval for treatment in myeloid and lymphocytic leukemia. Venetoclax has been recently investigated in HIV-1 and demonstrated anti-HIV-1 effects including a reduction in reservoir size. Another immunomodulatory strategy towards reduction in the lifespan of the reservoir is Jak 1/2 inhibition. The Jak STAT pathway has been implicated in BCL-2 and interleukin 10 (IL-10) expression, leading to a downstream effect of cellular senescence. Ruxolitinib and baricitinib are FDA-approved, orally bioavailable Jak 1/2 inhibitors that have been shown to indirectly decay the HIV-1 latent reservoir, and down-regulate markers of HIV-1 persistence, immune dysregulation and reservoir lifespan in vitro and ex vivo. Ruxolitinib recently demonstrated a significant decrease in BCL-2 expression in a human study of virally suppressed people living with HIV (PWH), and baricitinib recently received emergency use approval for the indication of coronavirus disease 2019 (COVID-19), underscoring their safety and efficacy in the viral infection setting. BCL-2 and Jak 1/2 inhibitors could be repurposed as immunomodulators for not only HIV-1 and COVID-19, but other viruses that upregulate BCL-2 anti-apoptotic proteins. This review examines potential routes for BCL-2 and Jak 1/2 inhibitors as immunomodulators for treatment and cure of HIV-1 and other viral infections.


Assuntos
COVID-19 , Infecções por HIV , HIV-1 , Estados Unidos , Humanos , Latência Viral , Janus Quinases/metabolismo , Reposicionamento de Medicamentos , Transdução de Sinais , Fatores de Transcrição STAT/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
18.
J Acquir Immune Defic Syndr ; 89(3): 340-348, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34879006

RESUMO

OBJECTIVE: Chronic inflammation is associated with increased morbidity and mortality for people with HIV (PWH). Psychological stress is an important contributor to this chronic inflammation. We hypothesized that a cognitively based compassion training (CBCT) approach could reduce inflammation and psychological stress in immune nonresponder PWH. DESIGN: An attention-placebo randomized controlled trial design to evaluate the acceptability of CBCT among PWH and its effects on key aspects of stress and immune function compared with an active-attention control group (NCT02395289). METHODS: This study was conducted at an HIV clinic in Atlanta, Georgia. Eligible individuals determined by (1) adherence to antiretroviral therapy for at least a year, (2) virologic suppression; and (3) stable CD4+ T-cell counts <350 cells/µL were randomized in a 2:1 ratio to either CBCT or control in 2 study periods: April-May, 2016, and September-December, 2016. Psychological measures and inflammatory biomarkers associated with HIV disease progression (IL-1ß, TNF-α, sCD14, IL-6, and IL-10) were obtained for all study participants at baseline and at the time of study completion. RESULTS: We found a significant association between CBCT practice time engagement and fold reduction in IL-6 and TNF-α levels. There was no association between CBCT practice time and other biomarkers markers assessed (IL-1ß, sCD14, and IL-10). These changes were coincident with significant increases in self-reported psychological well-being and HIV disease acceptance and in benefits for CBCT participants. We also observed fewer instances of virologic failure for those in the CBCT arm compared with controls. CONCLUSIONS: CBCT is a novel and feasible nonmedication-based intervention that could reduce inflammation and psychological stress in PWH.


Assuntos
Empatia , Infecções por HIV , Atenção , Biomarcadores , Infecções por HIV/tratamento farmacológico , Humanos , Estresse Psicológico/terapia
19.
J Biol Chem ; 285(50): 39380-91, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-20924117

RESUMO

We biochemically simulated HIV-1 DNA polymerization in physiological nucleotide pools found in two HIV-1 target cell types: terminally differentiated/non-dividing macrophages and activated/dividing CD4(+) T cells. Quantitative tandem mass spectrometry shows that macrophages harbor 22-320-fold lower dNTP concentrations and a greater disparity between ribonucleoside triphosphate (rNTP) and dNTP concentrations than dividing target cells. A biochemical simulation of HIV-1 reverse transcription revealed that rNTPs are efficiently incorporated into DNA in the macrophage but not in the T cell environment. This implies that HIV-1 incorporates rNTPs during viral replication in macrophages and also predicts that rNTP chain terminators lacking a 3'-OH should inhibit HIV-1 reverse transcription in macrophages. Indeed, 3'-deoxyadenosine inhibits HIV-1 proviral DNA synthesis in human macrophages more efficiently than in CD4(+) T cells. This study reveals that the biochemical landscape of HIV-1 replication in macrophages is unique and that ribonucleoside chain terminators may be a new class of anti-HIV-1 agents specifically targeting viral macrophage infection.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação Viral da Expressão Gênica , Transcriptase Reversa do HIV/química , HIV-1/enzimologia , Macrófagos/virologia , Ribonucleotídeos/química , Linfócitos T CD4-Positivos/virologia , Cromatografia Líquida/métodos , Primers do DNA/genética , Humanos , Cinética , Macrófagos/citologia , Nucleotídeos/química , Ligação Proteica , Células U937
20.
Front Immunol ; 12: 768695, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34790202

RESUMO

A major barrier to human immunodeficiency virus (HIV-1) cure is the latent viral reservoir, which persists despite antiretroviral therapy (ART), including across the non-dividing myeloid reservoir which is found systemically in sanctuary sites across tissues and the central nervous system (CNS). Unlike activated CD4+ T cells that undergo rapid cell death during initial infection (due to rapid viral replication kinetics), viral replication kinetics are delayed in non-dividing myeloid cells, resulting in long-lived survival of infected macrophages and macrophage-like cells. Simultaneously, persistent inflammation in macrophages confers immune dysregulation that is a key driver of co-morbidities including cardiovascular disease (CVD) and neurological deficits in people living with HIV-1 (PLWH). Macrophage activation and dysregulation is also a key driver of disease progression across other viral infections including SARS-CoV-2, influenza, and chikungunya viruses, underscoring the interplay between macrophages and disease progression, pathogenesis, and comorbidity in the viral infection setting. This review discusses the role of macrophages in persistence and pathogenesis of HIV-1 and related comorbidities, SARS-CoV-2 and other viruses. A special focus is given to novel immunomodulatory targets for key events driving myeloid cell dysregulation and reservoir maintenance across a diverse array of viral infections.


Assuntos
Infecções por HIV/imunologia , Fatores Imunológicos/imunologia , Macrófagos/imunologia , Viroses/imunologia , COVID-19/imunologia , HIV-1/imunologia , Humanos , SARS-CoV-2/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA