Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Mol Cell ; 82(6): 1107-1122.e7, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35303483

RESUMO

Splicing factor mutations are common among cancers, recently emerging as drivers of myeloid malignancies. U2AF1 carries hotspot mutations in its RNA-binding motifs; however, how they affect splicing and promote cancer remain unclear. The U2AF1/U2AF2 heterodimer is critical for 3' splice site (3'SS) definition. To specifically unmask changes in U2AF1 function in vivo, we developed a crosslinking and immunoprecipitation procedure that detects contacts between U2AF1 and the 3'SS AG at single-nucleotide resolution. Our data reveal that the U2AF1 S34F and Q157R mutants establish new 3'SS contacts at -3 and +1 nucleotides, respectively. These effects compromise U2AF2-RNA interactions, resulting predominantly in intron retention and exon exclusion. Integrating RNA binding, splicing, and turnover data, we predicted that U2AF1 mutations directly affect stress granule components, which was corroborated by single-cell RNA-seq. Remarkably, U2AF1-mutant cell lines and patient-derived MDS/AML blasts displayed a heightened stress granule response, pointing to a novel role for biomolecular condensates in adaptive oncogenic strategies.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Fator de Processamento U2AF , Grânulos de Estresse , Humanos , Leucemia Mieloide Aguda/genética , Mutação , Síndromes Mielodisplásicas/genética , Sítios de Splice de RNA , Splicing de RNA/genética , Proteínas de Ligação a RNA/genética , Fator de Processamento U2AF/genética , Fator de Processamento U2AF/metabolismo , Grânulos de Estresse/metabolismo
2.
Immunity ; 52(6): 1007-1021.e8, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32497523

RESUMO

N6-methyladenosine (m6A) is the most abundant RNA modification, but little is known about its role in mammalian hematopoietic development. Here, we show that conditional deletion of the m6A writer METTL3 in murine fetal liver resulted in hematopoietic failure and perinatal lethality. Loss of METTL3 and m6A activated an aberrant innate immune response, mediated by the formation of endogenous double-stranded RNAs (dsRNAs). The aberrantly formed dsRNAs were long, highly m6A modified in their native state, characterized by low folding energies, and predominantly protein coding. We identified coinciding activation of pattern recognition receptor pathways normally tasked with the detection of foreign dsRNAs. Disruption of the aberrant immune response via abrogation of downstream Mavs or Rnasel signaling partially rescued the observed hematopoietic defects in METTL3-deficient cells in vitro and in vivo. Our results suggest that m6A modification protects against endogenous dsRNA formation and a deleterious innate immune response during mammalian hematopoietic development.


Assuntos
Adenosina/química , Hematopoese/genética , Hematopoese/imunologia , Imunidade Inata/genética , RNA de Cadeia Dupla/metabolismo , Animais , Biomarcadores , Transtornos da Insuficiência da Medula Óssea/etiologia , Transtornos da Insuficiência da Medula Óssea/metabolismo , Transtornos da Insuficiência da Medula Óssea/patologia , Diferenciação Celular/genética , Modelos Animais de Doenças , Epigênese Genética , Expressão Gênica , Células-Tronco Hematopoéticas , Imunofenotipagem , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Camundongos Knockout , RNA de Cadeia Dupla/química
3.
Haematologica ; 108(2): 522-531, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35979721

RESUMO

Treatment for myelodysplastic syndromes (MDS) remains insufficient due to clonal heterogeneity and lack of effective clinical therapies. Dysregulation of apoptosis is observed across MDS subtypes regardless of mutations and represents an attractive therapeutic opportunity. Venetoclax (VEN), a selective inhibitor of anti-apoptotic protein B-cell lymphoma- 2 (BCL2), has yielded impressive responses in older patients with acute myeloid leukemia (AML) and high risk MDS. BCL2 family anti-apoptotic proteins BCL-XL and induced myeloid cell leukemia 1 (MCL1) are implicated in leukemia survival, and upregulation of MCL1 is seen in VEN-resistant AML and MDS. We determined in vitro sensitivity of MDS patient samples to selective inhibitors of BCL2, BCL-XL and MCL1. While VEN response positively correlated with MDS with excess blasts, all MDS subtypes responded to MCL1 inhibition. Treatment with combined VEN + MCL1 inhibtion was synergistic in all MDS subtypes without significant injury to normal hematopoiesis and reduced MDS engraftment in MISTRG6 mice, supporting the pursuit of clinical trials with combined BCL2 + MCL1 inhibition in MDS.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Animais , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2 , Modelos Animais de Doenças , Leucemia Mieloide Aguda/genética , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Apoptose , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Linhagem Celular Tumoral
4.
Cell Rep ; 42(10): 113163, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37742191

RESUMO

N6-methyladenosine (m6A) RNA modification controls numerous cellular processes. To what extent these post-transcriptional regulatory mechanisms play a role in hematopoiesis has not been fully elucidated. We here show that the m6A demethylase alkB homolog 5 (ALKBH5) controls mitochondrial ATP production and modulates hematopoietic stem and progenitor cell (HSPC) fitness in an m6A-dependent manner. Loss of ALKBH5 results in increased RNA methylation and instability of oxoglutarate-dehydrogenase (Ogdh) messenger RNA and reduction of OGDH protein levels. Limited OGDH availability slows the tricarboxylic acid (TCA) cycle with accumulation of α-ketoglutarate (α-KG) and conversion of α-KG into L-2-hydroxyglutarate (L-2-HG). L-2-HG inhibits energy production in both murine and human hematopoietic cells in vitro. Impaired mitochondrial energy production confers competitive disadvantage to HSPCs and limits clonogenicity of Mll-AF9-induced leukemia. Our study uncovers a mechanism whereby the RNA m6A demethylase ALKBH5 regulates the stability of metabolic enzyme transcripts, thereby controlling energy metabolism in hematopoiesis and leukemia.


Assuntos
Leucemia , RNA , Animais , Humanos , Camundongos , Homólogo AlkB 5 da RNA Desmetilase/genética , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Metabolismo Energético , Células-Tronco Hematopoéticas/metabolismo , RNA/metabolismo , Estabilidade de RNA/genética
5.
Leukemia ; 36(5): 1313-1323, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35273342

RESUMO

Treatment options for patients with relapsed/refractory acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are scarce. Recurring mutations, such as mutations in isocitrate dehydrogenase-1 and -2 (IDH1/2) are found in subsets of AML and MDS, are therapeutically targeted by mutant enzyme-specific small molecule inhibitors (IDHmi). IDH mutations induce diverse metabolic and epigenetic changes that drive malignant transformation. IDHmi alone are not curative and resistance commonly develops, underscoring the importance of alternate therapeutic options. We were first to report that IDH1/2 mutations induce a homologous recombination (HR) defect, which confers sensitivity to poly (ADP)-ribose polymerase inhibitors (PARPi). Here, we show that the PARPi olaparib is effective against primary patient-derived IDH1/2-mutant AML/ MDS xeno-grafts (PDXs). Olaparib efficiently reduced overall engraftment and leukemia-initiating cell frequency as evident in serial transplantation assays in IDH1/2-mutant but not -wildtype AML/MDS PDXs. Importantly, we show that olaparib is effective in both IDHmi-naïve and -resistant AML PDXs, critical given the high relapse and refractoriness rates to IDHmi. Our pre-clinical studies provide a strong rationale for the translation of PARP inhibition to patients with IDH1/2-mutant AML/ MDS, providing an additional line of therapy for patients who do not respond to or relapse after targeted mutant IDH inhibition.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Inibidores Enzimáticos/farmacologia , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Recidiva
6.
Science ; 371(6533): 1019-1025, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674488

RESUMO

In vivo models that recapitulate human erythropoiesis with persistence of circulating red blood cells (RBCs) have remained elusive. We report an immunodeficient murine model in which combined human liver and cytokine humanization confer enhanced human erythropoiesis and RBC survival in the circulation. We deleted the fumarylacetoacetate hydrolase (Fah) gene in MISTRG mice expressing several human cytokines in place of their murine counterparts. Liver humanization by intrasplenic injection of human hepatocytes (huHep) eliminated murine complement C3 and reduced murine Kupffer cell density. Engraftment of human sickle cell disease (SCD)-derived hematopoietic stem cells in huHepMISTRGFah -/- mice resulted in vaso-occlusion that replicated acute SCD pathology. Combined liver-cytokine-humanized mice will facilitate the study of diseases afflicting RBCs, including bone marrow failure, hemoglobinopathies, and malaria, and also preclinical testing of therapies.


Assuntos
Anemia Falciforme/sangue , Circulação Sanguínea , Modelos Animais de Doenças , Eritrócitos/citologia , Eritropoese/fisiologia , Camundongos , Animais , Citocinas/metabolismo , Eritropoese/genética , Feminino , Deleção de Genes , Células-Tronco Hematopoéticas/citologia , Humanos , Hidrolases/genética , Fígado/fisiologia , Camundongos Mutantes , Pessoa de Meia-Idade
7.
Blood Adv ; 5(5): 1164-1177, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33635335

RESUMO

Pathologic immune hyperactivation is emerging as a key feature of critical illness in COVID-19, but the mechanisms involved remain poorly understood. We carried out proteomic profiling of plasma from cross-sectional and longitudinal cohorts of hospitalized patients with COVID-19 and analyzed clinical data from our health system database of more than 3300 patients. Using a machine learning algorithm, we identified a prominent signature of neutrophil activation, including resistin, lipocalin-2, hepatocyte growth factor, interleukin-8, and granulocyte colony-stimulating factor, which were the strongest predictors of critical illness. Evidence of neutrophil activation was present on the first day of hospitalization in patients who would only later require transfer to the intensive care unit, thus preceding the onset of critical illness and predicting increased mortality. In the health system database, early elevations in developing and mature neutrophil counts also predicted higher mortality rates. Altogether, these data suggest a central role for neutrophil activation in the pathogenesis of severe COVID-19 and identify molecular markers that distinguish patients at risk of future clinical decompensation.


Assuntos
COVID-19/imunologia , Ativação de Neutrófilo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , COVID-19/sangue , COVID-19/mortalidade , Estado Terminal/epidemiologia , Estado Terminal/mortalidade , Estudos Transversais , Feminino , Hospitalização , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Prognóstico , SARS-CoV-2/imunologia , Índice de Gravidade de Doença
8.
Methods Mol Biol ; 2097: 273-289, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31776933

RESUMO

Ex vivo generation and expansion of functional hematopoietic stem cells represents the holy grail of reprogramming and would constitute a major advance in stem cell therapies and generation of blood cellular products. In vivo testing is critical to assure proper cell intrinsic function in an organismal context. Here we describe methods for the generation of human hematopoiesis chimeric mice and evaluation of hematopoietic stem cell function. The choice of mouse model, stem cell source, and transplantation route can be adjusted to suit the desired application.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Animais , Animais Recém-Nascidos , Antígenos CD34/metabolismo , Linhagem da Célula , Separação Celular , Humanos , Camundongos , Transplante Heterólogo
9.
Biochem Pharmacol ; 174: 113794, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31926939

RESUMO

Humanized mice have proven to be invaluable for human hematological translational research since they offer essential tools to dissect disease biology and to bridge the gap between pre-clinical testing of novel therapeutics and their clinical applications. Many efforts have been placed to advance and optimize humanized mice to support the engraftment, differentiation, and maintenance of hematopoietic stem cells (HSCs) and the human hematological system in order to broaden the scope of applications of such models. This review covers the background of humanized mice, how they are used as platforms to model myeloid malignancies, and the various current and potential approaches to further enhance their utilization in biomedical research.


Assuntos
Modelos Animais de Doenças , Leucemia Mieloide Aguda/patologia , Síndromes Mielodisplásicas/patologia , Animais , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/patologia , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID
10.
medRxiv ; 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32637968

RESUMO

Despite over 9.3 million infected and 479,000 deaths, the pathophysiological factors that determine the wide spectrum of clinical outcomes in COVID-19 remain inadequately defined. Importantly, patients with underlying cardiovascular disease have been found to have worse clinical outcomes,1 and autopsy findings of endotheliopathy as well as angiogenesis in COVID-19 have accumulated.2,3 Nonetheless, circulating vascular markers associated with disease severity and mortality have not been reliably established. To address this limitation and better understand COVID-19 pathogenesis, we report plasma profiling of factors related to the vascular system from a series of patients admitted to Yale-New Haven Hospital with confirmed diagnosis of COVID-19 via PCR, which demonstrate significant increase in markers of angiogenesis and endotheliopathy in patients hospitalized with COVID-19.

11.
Pulm Circ ; 10(4): 2045894020966547, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33282193

RESUMO

Increase in thrombotic and microvascular complications is emerging to be a key feature of patients with critical illness associated with COVID-19 infection. While endotheliopathy is thought to be a key factor of COVID-19-associated coagulopathy, markers indicative of this process that are prognostic of disease severity have not been well-established in this patient population. Using plasma profiling of patients with COVID-19, we identified circulating markers that segregated with disease severity: markers of angiogenesis (VEGF-A, PDGF-AA and PDGF-AB/BB) were elevated in hospitalized patients with non-critical COVID-19 infection, while markers of endothelial injury (angiopoietin-2, FLT-3L, PAI-1) were elevated in patients with critical COVID-19 infection. In survival analysis, elevated markers of endothelial injury (angiopoietin-2, follistatin, PAI-1) were strongly predictive of in-hospital mortality. Our findings demonstrate that non-critical and critical phases of COVID-19 disease may be driven by distinct mechanisms involving key aspects of endothelial cell function, and identify drivers of COVID-19 pathogenesis and potential targets for future therapies.

12.
medRxiv ; 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32908988

RESUMO

Pathologic immune hyperactivation is emerging as a key feature of critical illness in COVID-19, but the mechanisms involved remain poorly understood. We carried out proteomic profiling of plasma from cross-sectional and longitudinal cohorts of hospitalized patients with COVID-19 and analyzed clinical data from our health system database of over 3,300 patients. Using a machine learning algorithm, we identified a prominent signature of neutrophil activation, including resistin, lipocalin-2, HGF, IL-8, and G-CSF, as the strongest predictors of critical illness. Neutrophil activation was present on the first day of hospitalization in patients who would only later require transfer to the intensive care unit, thus preceding the onset of critical illness and predicting increased mortality. In the health system database, early elevations in developing and mature neutrophil counts also predicted higher mortality rates. Altogether, we define an essential role for neutrophil activation in the pathogenesis of severe COVID-19 and identify molecular neutrophil markers that distinguish patients at risk of future clinical decompensation.

13.
Nat Commun ; 10(1): 366, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30664659

RESUMO

Comprehensive preclinical studies of Myelodysplastic Syndromes (MDS) have been elusive due to limited ability of MDS stem cells to engraft current immunodeficient murine hosts. Here we report a MDS patient-derived xenotransplantation model in cytokine-humanized immunodeficient "MISTRG" mice that provides efficient and faithful disease representation across all MDS subtypes. MISTRG MDS patient-derived xenografts (PDX) reproduce patients' dysplastic morphology with multi-lineage representation, including erythro- and megakaryopoiesis. MISTRG MDS-PDX replicate the original sample's genetic complexity and can be propagated via serial transplantation. MISTRG MDS-PDX demonstrate the cytotoxic and differentiation potential of targeted therapeutics providing superior readouts of drug mechanism of action and therapeutic efficacy. Physiologic humanization of the hematopoietic stem cell niche proves critical to MDS stem cell propagation and function in vivo. The MISTRG MDS-PDX model opens novel avenues of research and long-awaited opportunities in MDS research.


Assuntos
Modelos Animais de Doenças , Sobrevivência de Enxerto , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/imunologia , Síndromes Mielodisplásicas/imunologia , Nicho de Células-Tronco/imunologia , Animais , Antígenos CD/genética , Antígenos CD/imunologia , Biomarcadores/metabolismo , Citocinas/genética , Citocinas/imunologia , Expressão Gênica , Técnicas de Introdução de Genes , Células-Tronco Hematopoéticas/patologia , Humanos , Camundongos , Camundongos Transgênicos , Síndromes Mielodisplásicas/patologia , Transplante Heterólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA