Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Small ; : e2401487, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767498

RESUMO

Reducing the defect density of perovskite films during the crystallization process is critical in preparing high-performance perovskite solar cells (PSCs). Here, a multi-functional molecule, 3-phenyl-4-aminobutyric acid hydrochloride (APH), with three functional groups including a benzene ring, ─NH3 + and ─COOH, is added into the perovskite precursor solution to improve perovskite crystallization and device performance. The benzene ring increases the hydrophobicity of perovskites, while ─NH3 + and ─COOH passivate defects related to I- and Pb2+, respectively. Consequently, the power conversion efficiency (PCE) of the optimal device increased to 24.65%. Additionally, an effective area of 1 cm2 with a PCE of 22.45% is also prepared using APH as an additive. Furthermore, PSCs prepared with APH exhibit excellent stability by 87% initial PCE without encapsulation after exposure at room temperature under 25% humidity for 5000 h and retaining 70% of initial PCE after aging at 85 °C in an N2 environment for 864 h.

2.
Angew Chem Int Ed Engl ; 63(14): e202319282, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38272832

RESUMO

The power conversion efficiencies (PCEs) of perovskite solar cells have recently developed rapidly compared to crystalline silicon solar cells. To have an effective way to control the crystallization of perovskite thin films is the key for achieving good device performance. However, a paradox in perovskite crystallization is from the mismatch between nucleation and Oswald ripening. Usually, the large numbers of nucleation sites tend to weak Oswald ripening. Here, we proposed a new mechanism to promote the formation of nucleation sites by reducing surface energy from 44.9 mN/m to 36.1 mN/m, to spontaneously accelerate the later Oswald ripening process by improving the grain solubility through the elastic modulus regulation. The ripening rate is increased from 2.37 Åm ⋅ s-1 to 4.61 Åm ⋅ s-1 during annealing. Finally, the solar cells derived from the optimized films showed significantly improved PCE from 23.14 % to 25.32 %. The long-term stability tests show excellent thermal stability (the optimized device without encapsulation maintaining 82 % of its initial PCE after 800 h aging at 85 °C) and an improved light stability under illumination. This work provides a new method, the elastic modulus regulation, to enhance the ripening process.

3.
Bioengineered ; 13(3): 6650-6664, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35230214

RESUMO

Mitochondrial fission depends on dynamin-related protein 1 (Drp1) guanosine triphosphatase activity. Although there is some association between Drp1 and gastric cancer, the detailed mechanism remains largely unknown. In this study, the elevation of Drp1 was observed in human gastric carcinoma specimens including gastric mixed adenocarcinoma tissues, gastric intestinal-type adenocarcinoma tissues, and human gastric cancer cells compared to normal control, but not in diffuse gastric adenocarcinoma tissues. Gastric cancer patients with high Drp1 harbored advanced pathological stages and poor progression-free survival probability compared to those with low Drp1. Mdivi-1-mediated inactivation of Drp1 robustly inhibited cell viability and tumor growth but conversely induced cell apoptotic events in vitro and in vivo. Based on the Encyclopedia of RNA Interactomes Starbase, L22 ribosomal protein (RPL22) was recognized as the potential downstream oncogene of Drp1. Clinically, the significant correlation of Drp1 and RPL22 was also verified. Mechanistically, Drp1 inactivation did not affect the accumulation of RPL22 in gastric carcinoma. However, the intracellular distribution of RPL22 had an endonuclear location in Drp1-inactivated tumors. Of note, Drp1 inactivation notably reduced the expression of cytoplasmic RPL22 and increased its nuclear level in gastric cancer cells. Collectively, Drp1 had high levels in human gastric carcinoma specimens and could serve as a potential diagnostic and prognostic biomarker in gastric carcinoma. The Drp1 inactivation-mediated anti-proliferative and pro-apoptosis effects on gastric cancer were possibly associated with nuclear import of RPL22. This knowledge may provide new therapeutic tools for treating gastric carcinoma via targeting mitochondria-related ribosome pathway.


Assuntos
Dinaminas/genética , Proteínas Ribossômicas/genética , Neoplasias Gástricas , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Transcriptoma/genética
4.
Mitochondrial DNA B Resour ; 6(11): 3209-3211, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34693006

RESUMO

In this study, we report the complete mitochondrial genome of Pterygoplichthys pardalis has derived by next-generation sequencing. The complete mitochondrial genome of P. pardalis contains 16,425 bp encompassing 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and one control region (D-loop). The base composition is A 31.79%, C 26.89%, G 14.63%, and T 26.69%, and its gene arrangement is consistent with mitochondrial genomes derived from other representatives of Loricariidae. A phylogenetic tree of 24 Loricariidae species constructed based on the 13 coding genes shows that P. pardalis is clustered with other Pterygoplichthys genus. It suggests that the molecular classification results confirm its external morphological characteristics. These results have reference value for the further study of phylogenetic relationship, taxonomic classification, and phylogeography of Loricariidae.

5.
Zool Res ; 42(1): 130-134, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33377334

RESUMO

The Atlantic sea nettle ( Chrysaora quinquecirrha) has an important evolutionary position due to its high ecological value. However, due to limited sequencing technologies and complex jellyfish genomic sequences, the current C. quinquecirrha genome assembly is highly fragmented. Here, we used the most advanced high-throughput chromosome conformation capture (Hi-C) technology to obtain high-coverage sequencing data of the C. quinquecirrha genome. We then anchored these data to the previously published contig-level assembly to improve the genome. Finally, a high-continuity genome sequence of C. quinquecirrha was successfully assembled, which contained 1 882 scaffolds with a N50 length of 3.83 Mb. The N50 length of the genome assembly was 5.23 times longer than the previously released one, and additional analysis revealed that it had a high degree of genomic continuity and accuracy. Acquisition of the high-continuity genome sequence of C. quinquecirrha not only provides a basis for the study of jellyfish evolution through comparative genomics but also provides an important resource for studies on jellyfish growth and development.


Assuntos
Genoma , Cifozoários/genética , Animais , Evolução Biológica , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA