Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 294(25): 9959-9972, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31092598

RESUMO

Mesoderm development is a finely tuned process initiated by the differentiation of pluripotent epiblast cells. Serine/threonine kinase 40 (STK40) controls the development of several mesoderm-derived cell types, its overexpression induces differentiation of mouse embryonic stem cells (mESCs) toward the extraembryonic endoderm, and Stk40 knockout (KO) results in multiple organ failure and is lethal at the perinatal stage in mice. However, molecular mechanisms underlying the physiological functions of STK40 in mesoderm differentiation remain elusive. Here, we report that Stk40 ablation impairs mesoderm differentiation both in vitro and in vivo Mechanistically, STK40 interacts with both the E3 ubiquitin ligase mammalian constitutive photomorphogenesis protein 1 (COP1) and the transcriptional regulator proto-oncogene c-Jun (c-JUN), promoting c-JUN protein degradation. Consequently, Stk40 knockout leads to c-JUN protein accumulation, which, in turn, apparently suppresses WNT signaling activity and impairs the mesoderm differentiation process. Overall, this study reveals that STK40, together with COP1, represents a previously unknown regulatory axis that modulates the c-JUN protein level within an appropriate range during mesoderm differentiation from mESCs. Our findings provide critical insights into the molecular mechanisms regulating the c-JUN protein level and may have potential implications for managing cellular disorders arising from c-JUN dysfunction.


Assuntos
Diferenciação Celular , Mesoderma/citologia , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteína Wnt1/metabolismo , Animais , Células Cultivadas , Mesoderma/metabolismo , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Proto-Oncogênicas c-jun/genética , Ubiquitina-Proteína Ligases/genética , Proteína Wnt1/genética
2.
J Biol Chem ; 292(23): 9840-9854, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28298438

RESUMO

The mammalian post-implantation embryo has been extensively investigated at the tissue level. However, to unravel the molecular basis for the cell-fate plasticity and determination, it is essential to study the characteristics of individual cells. In particular, the individual definitive endoderm (DE) cells have not been characterized in vivo Here, we report gene expression patterns in single cells freshly isolated from mouse embryos on days 5.5 and 6.5. Initial transcriptome data from 124 single cells yielded signature genes for the epiblast, visceral endoderm, and extra-embryonic ectoderm and revealed a unique distribution pattern of fibroblast growth factor (FGF) ligands and receptors. Further analysis indicated that early-stage epiblast cells do not segregate into lineages of the major germ layers. Instead, some cells began to diverge from epiblast cells, displaying molecular features of the premesendoderm by expressing higher levels of mesendoderm markers and lower levels of Sox3 transcripts. Analysis of single-cell high-throughput quantitative RT-PCR data from 441 cells identified a late stage of the day 6.5 embryo in which mesoderm and DE cells emerge, with many of them coexpressing Oct4 and Gata6 Analysis of single-cell RNA-sequence data from 112 cells of the late-stage day 6.5 embryos revealed differentially expressed signaling genes and networks of transcription factors that might underlie the segregation of the mesoderm and DE lineages. Moreover, we discovered a subpopulation of mesoderm cells that possess molecular features of the extraembryonic mesoderm. This study provides fundamental insight into the molecular basis for lineage segregation in post-implantation mouse embryos.


Assuntos
Antígenos de Diferenciação/biossíntese , Linhagem da Célula/fisiologia , Embrião de Mamíferos , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Transcriptoma/fisiologia , Animais , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fator de Transcrição GATA6/biossíntese , Camundongos , Fator 3 de Transcrição de Octâmero/biossíntese , Fatores de Transcrição SOXB1/biossíntese
3.
J Biol Chem ; 292(1): 351-360, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-27899448

RESUMO

Skeletal muscle differentiation is a precisely coordinated process, and the molecular mechanism regulating the process remains incompletely understood. Here we report the identification of serine/threonine kinase 40 (Stk40) as a novel positive regulator of skeletal myoblast differentiation in culture and fetal skeletal muscle formation in vivo We show that the expression level of Stk40 increases during skeletal muscle differentiation. Down-regulation and overexpression of Stk40 significantly decreases and increases myogenic differentiation of C2C12 myoblasts, respectively. In vivo, the number of myofibers and expression levels of myogenic markers are reduced in the fetal muscle of Stk40 knockout mice, indicating impaired fetal skeletal muscle formation. Mechanistically, Stk40 controls the protein level of histone deacetylase 5 (HDAC5) to maintain transcriptional activities of myocyte enhancer factor 2 (MEF2), a family of transcription factor important for skeletal myogenesis. Silencing of HDAC5 expression rescues the reduced myogenic gene expression caused by Stk40 deficiency. Together, our study reveals that Stk40 is required for fetal skeletal muscle development and provides molecular insights into the control of the HDAC5-MEF2 axis in skeletal myogenesis.


Assuntos
Diferenciação Celular , Feto/citologia , Histona Desacetilases/metabolismo , Fatores de Transcrição MEF2/metabolismo , Músculo Esquelético/citologia , Proteínas Serina-Treonina Quinases/fisiologia , Animais , Células Cultivadas , Feto/metabolismo , Histona Desacetilases/genética , Fatores de Transcrição MEF2/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Fosforilação , Transdução de Sinais
4.
Cell Death Dis ; 8(3): e2722, 2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-28358362

RESUMO

The serine threonine kinase Stk40 has been shown to involve in mouse embryonic stem cell differentiation, pulmonary maturation and adipocyte differentiation. Here we report that targeted deletion of Stk40 leads to fetal liver hypoplasia and anemia in the mouse embryo. The reduction of erythrocytes in the fetal liver is accompanied by increased apoptosis and compromised erythroid maturation. Stk40-/- fetal liver cells have significantly reduced colony-forming units (CFUs) capable of erythroid differentiation, including burst forming unit-erythroid, CFU-erythroid (CFU-E), and CFU-granulocyte, erythrocyte, megakaryocyte and macrophage, but not CFU-granulocyte/macrophages. Purified Stk40-/- megakaryocyte-erythrocyte progenitors produce substantially fewer CFU-E colonies compared to control cells. Moreover, Stk40-/- fetal liver erythroblasts fail to form normal erythroblastic islands in association with wild type or Stk40-/- macrophages, indicating an intrinsic defect of Stk40-/- erythroblasts. Furthermore, the hematopoietic stem and progenitor cell pool is reduced in Stk40-/- fetal livers but still retains the multi-lineage reconstitution capacity. Finally, comparison of microarray data between wild type and Stk40-/- E14.5 fetal liver cells reveals a potential role of aberrantly activated TNF-α signaling in Stk40 depletion induced dyserythropoiesis with a concomitant increase in cleaved caspase-3 and decrease in Gata1 proteins. Altogether, the identification of Stk40 as a regulator for fetal erythroid maturation and survival provides new clues to the molecular regulation of erythropoiesis and related diseases.


Assuntos
Eritroblastos/metabolismo , Eritropoese/fisiologia , Feto/embriologia , Fígado/embriologia , Células Progenitoras de Megacariócitos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Deleção de Genes , Camundongos , Camundongos Knockout , Proteínas Serina-Treonina Quinases/genética
5.
Cell Stem Cell ; 20(2): 274-289.e7, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-27939217

RESUMO

The chromatin landscape and cellular metabolism both contribute to cell fate determination, but their interplay remains poorly understood. Using genome-wide siRNA screening, we have identified prohibitin (PHB) as an essential factor in self-renewal of human embryonic stem cells (hESCs). Mechanistically, PHB forms protein complexes with HIRA, a histone H3.3 chaperone, and stabilizes the protein levels of HIRA complex components. Like PHB, HIRA is required for hESC self-renewal. PHB and HIRA act together to control global deposition of histone H3.3 and gene expression in hESCs. Of particular note, PHB and HIRA regulate the chromatin architecture at the promoters of isocitrate dehydrogenase genes to promote transcription and, thus, production of α-ketoglutarate, a key metabolite in the regulation of ESC fate. Our study shows that PHB has an unexpected nuclear role in hESCs that is required for self-renewal and that it acts with HIRA in chromatin organization to link epigenetic organization to a metabolic circuit.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Epigênese Genética , Chaperonas de Histonas/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Autorrenovação Celular/genética , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Genes Controladores do Desenvolvimento , Genoma Humano , Células HEK293 , Histonas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Humanos , Isocitrato Desidrogenase/metabolismo , Ácidos Cetoglutáricos/metabolismo , Masculino , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proibitinas , Regiões Promotoras Genéticas , Ligação Proteica/genética , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA