Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Blood ; 134(16): 1323-1336, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31492675

RESUMO

The polycomb repressive complex 2, with core components EZH2, SUZ12, and EED, is responsible for writing histone 3 lysine 27 trimethylation histone marks associated with gene repression. Analysis of sequence data from 419 T-cell acute lymphoblastic leukemia (T-ALL) cases demonstrated a significant association between SUZ12 and JAK3 mutations. Here we show that CRISPR/Cas9-mediated inactivation of Suz12 cooperates with mutant JAK3 to drive T-cell transformation and T-ALL development. Gene expression profiling integrated with ChIP-seq and ATAC-seq data established that inactivation of Suz12 led to increased PI3K/mammalian target of rapamycin (mTOR), vascular endothelial growth factor (VEGF), and WNT signaling. Moreover, a drug screen revealed that JAK3/Suz12 mutant leukemia cells were more sensitive to histone deacetylase (HDAC)6 inhibition than JAK3 mutant leukemia cells. Among the broad genome and gene expression changes observed on Suz12 inactivation, our integrated analysis identified the PI3K/mTOR, VEGF/VEGF receptor, and HDAC6/HSP90 pathways as specific vulnerabilities in T-ALL cells with combined JAK3 and SUZ12 mutations.


Assuntos
Transformação Celular Neoplásica/genética , Complexo Repressor Polycomb 2/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Transdução de Sinais/fisiologia , Animais , Humanos , Janus Quinase 3/genética , Camundongos , Mutação , Proteínas de Neoplasias , Fatores de Transcrição
2.
Blood ; 131(4): 421-425, 2018 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-29187379

RESUMO

The Janus kinase 3 (JAK3) tyrosine kinase is mutated in 10% to 16% of T-cell acute lymphoblastic leukemia (T-ALL) cases. JAK3 mutants induce constitutive JAK/STAT signaling and cause leukemia when expressed in the bone marrow cells of mice. Surprisingly, we observed that one third of JAK3-mutant T-ALL cases harbor 2 JAK3 mutations, some of which are monoallelic and others that are biallelic. Our data suggest that wild-type JAK3 competes with mutant JAK3 (M511I) for binding to the common γ chain and thereby suppresses its oncogenic potential. We demonstrate that JAK3 (M511I) can increase its limited oncogenic potential through the acquisition of an additional mutation in the mutant JAK3 allele. These double JAK3 mutants show increased STAT5 activation and increased potential to transform primary mouse pro-T cells to interleukin-7-independent growth and were not affected by wild-type JAK3 expression. These data extend our insight into the oncogenic properties of JAK3 mutations and provide an explanation of why progression of JAK3-mutant T-ALL cases can be associated with the accumulation of additional JAK3 mutations.


Assuntos
Janus Quinase 3/genética , Mutação Puntual , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Transdução de Sinais , Alelos , Linhagem Celular Tumoral , Humanos , Janus Quinase 3/metabolismo , Modelos Moleculares , Taxa de Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo
3.
Blood ; 128(23): 2642-2654, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27694322

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive childhood leukemia that is caused by the accumulation of multiple genomic lesions resulting in transcriptional deregulation and increased cell proliferation and survival. Through analysis of gene expression data, we provide evidence that the hedgehog pathway is activated in 20% of T-ALL samples. Hedgehog pathway activation is associated with ectopic expression of the hedgehog ligands Sonic hedgehog (SHH) or Indian hedgehog (IHH), and with upregulation of the transcription factor GLI1 Ectopic expression of SHH or IHH in mouse T cells in vivo caused hedgehog pathway activation in both lymphoid and epithelial cells in the thymus and resulted in increased expression of important T-cell stimulatory ligands (Dll4, Il7, and Vegf) by thymic epithelial cells. In T-ALL cell lines, pharmacological inhibition or short interfering RNA-mediated knockdown of SMO or GLI1 led to decreased cell proliferation. Moreover, primary T-ALL cases with high GLI1 messenger RNA levels, but not those with low or undetectable GLI1 expression, were sensitive to hedgehog pathway inhibition by GANT61 or GDC-0449 (vismodegib) using ex vivo cultures and in vivo xenograft models. We identify the hedgehog pathway as a novel therapeutic target in T-ALL and demonstrate that hedgehog inhibitors approved by the US Food and Drug Administration could be used for the treatment of this rare leukemia.


Assuntos
Anilidas/farmacologia , Proteínas Hedgehog/metabolismo , Proteínas de Neoplasias , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Piridinas/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Receptor Smoothened/antagonistas & inibidores , Proteína GLI1 em Dedos de Zinco/antagonistas & inibidores , Animais , Feminino , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Receptor Smoothened/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína GLI1 em Dedos de Zinco/metabolismo
4.
Haematologica ; 102(9): 1605-1616, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28659337

RESUMO

Anaplastic lymphoma kinase (ALK)-positive anaplastic large cell lymphoma is characterized by 2p23/ALK aberrations, including the classic t(2;5)(p23;q35)/NPM1-ALK rearrangement present in ~80% of cases and several variant t(2p23/ALK) occurring in the remaining cases. The ALK fusion partners play a key role in the constitutive activation of the chimeric protein and its subcellular localization. Using various molecular technologies, we have characterized ALK fusions in eight recently diagnosed anaplastic large cell lymphoma cases with cytoplasmic-only ALK expression. The identified partner genes included EEF1G (one case), RNF213/ALO17 (one case), ATIC (four cases) and TPM3 (two cases). Notably, all cases showed copy number gain of the rearranged ALK gene, which is never observed in NPM1-ALK-positive lymphomas. We hypothesized that this could be due to lower expression levels and/or lower oncogenic potential of the variant ALK fusions. Indeed, all partner genes, except EEF1G, showed lower expression in normal and malignant T cells, in comparison with NPM1 In addition, we investigated the transformation potential of endogenous Npm1-Alk and Atic-Alk fusions generated by clustered regularly interspaced short palindromic repeats/Cas9 genome editing in Ba/F3 cells. We found that Npm1-Alk has a stronger transformation potential than Atic-Alk, and we observed a subclonal gain of Atic-Alk after a longer culture period, which was not observed for Npm1-Alk Taken together, our data illustrate that lymphomas driven by the variant ATIC-ALK fusion (and likely by RNF213-ALK and TPM3-ALK), but not the classic NPM1-ALK, require an increased dosage of the ALK hybrid gene to compensate for the relatively low and insufficient expression and signaling properties of the chimeric gene.


Assuntos
Adenosina Trifosfatases/genética , Rearranjo Gênico , Hidroximetil e Formil Transferases/genética , Linfoma Anaplásico de Células Grandes/genética , Complexos Multienzimáticos/genética , Nucleotídeo Desaminases/genética , Proteínas de Fusão Oncogênica/genética , Receptores Proteína Tirosina Quinases/genética , Translocação Genética , Tropomiosina/genética , Ubiquitina-Proteína Ligases/genética , Adolescente , Idoso , Quinase do Linfoma Anaplásico , Pré-Escolar , Feminino , Humanos , Linfoma Anaplásico de Células Grandes/patologia , Masculino , Pessoa de Meia-Idade , Nucleofosmina
5.
Blood ; 124(20): 3092-100, 2014 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-25193870

RESUMO

JAK3 is a tyrosine kinase that associates with the common γ chain of cytokine receptors and is recurrently mutated in T-cell acute lymphoblastic leukemia (T-ALL). We tested the transforming properties of JAK3 pseudokinase and kinase domain mutants using in vitro and in vivo assays. Most, but not all, JAK3 mutants transformed cytokine-dependent Ba/F3 or MOHITO cell lines to cytokine-independent proliferation. JAK3 pseudokinase mutants were dependent on Jak1 kinase activity for cellular transformation, whereas the JAK3 kinase domain mutant could transform cells in a Jak1 kinase-independent manner. Reconstitution of the IL7 receptor signaling complex in 293T cells showed that JAK3 mutants required receptor binding to mediate downstream STAT5 phosphorylation. Mice transplanted with bone marrow progenitor cells expressing JAK3 mutants developed a long-latency transplantable T-ALL-like disease, characterized by an accumulation of immature CD8(+) T cells. In vivo treatment of leukemic mice with the JAK3 selective inhibitor tofacitinib reduced the white blood cell count and caused leukemic cell apoptosis. Our data show that JAK3 mutations are drivers of T-ALL and require the cytokine receptor complex for transformation. These results warrant further investigation of JAK1/JAK3 inhibitors for the treatment of T-ALL.


Assuntos
Transformação Celular Neoplásica/genética , Modelos Animais de Doenças , Janus Quinase 1/metabolismo , Janus Quinase 3/genética , Leucemia de Células T/genética , Camundongos , Doença Aguda , Animais , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Ativação Enzimática/efeitos dos fármacos , Janus Quinase 3/antagonistas & inibidores , Janus Quinase 3/metabolismo , Leucemia de Células T/tratamento farmacológico , Leucemia de Células T/metabolismo , Leucemia de Células T/patologia , Masculino , Camundongos/genética , Camundongos/metabolismo , Camundongos Endogâmicos BALB C , Mutação , Piperidinas/uso terapêutico , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linfócitos T/patologia
6.
Haematologica ; 101(8): 941-50, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27151993

RESUMO

Despite therapeutic improvements, a sizable number of patients with T-cell acute lymphoblastic leukemia still have a poor outcome. To unravel the genomic background associated with refractoriness, we evaluated the transcriptome of 19 cases of refractory/early relapsed T-cell acute lymphoblastic leukemia (discovery cohort) by performing RNA-sequencing on diagnostic material. The incidence and prognostic impact of the most frequently mutated pathways were validated by Sanger sequencing on genomic DNA from diagnostic samples of an independent cohort of 49 cases (validation cohort), including refractory, relapsed and responsive cases. Combined gene expression and fusion transcript analyses in the discovery cohort revealed the presence of known oncogenes and identified novel rearrangements inducing overexpression, as well as inactivation of tumor suppressor genes. Mutation analysis identified JAK/STAT and RAS/PTEN as the most commonly disrupted pathways in patients with chemorefractory disease or early relapse, frequently in association with NOTCH1/FBXW7 mutations. The analysis on the validation cohort documented a significantly higher risk of relapse, inferior overall survival, disease-free survival and event-free survival in patients with JAK/STAT or RAS/PTEN alterations. Conversely, a significantly better survival was observed in patients harboring only NOTCH1/FBXW7 mutations: this favorable prognostic effect was abrogated by the presence of concomitant mutations. Preliminary in vitro assays on primary cells demonstrated sensitivity to specific inhibitors. These data document the negative prognostic impact of JAK/STAT and RAS/PTEN mutations in T-cell acute lymphoblastic leukemia and suggest the potential clinical application of JAK and PI3K/mTOR inhibitors in patients harboring mutations in these pathways.


Assuntos
Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Análise de Sequência de RNA , Adolescente , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Proteínas de Ciclo Celular/metabolismo , Criança , Análise por Conglomerados , Estudos de Coortes , Resistencia a Medicamentos Antineoplásicos , Proteínas F-Box/metabolismo , Proteína 7 com Repetições F-Box-WD , Feminino , Perfilação da Expressão Gênica , Humanos , Janus Quinases/metabolismo , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas de Fusão Oncogênica/genética , PTEN Fosfo-Hidrolase/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/mortalidade , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Prognóstico , Receptor Notch1/genética , Receptor Notch1/metabolismo , Recidiva , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Análise de Sobrevida , Resultado do Tratamento , Ubiquitina-Proteína Ligases/metabolismo , Adulto Jovem , Proteínas ras/metabolismo
7.
PLoS Genet ; 9(12): e1003997, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367274

RESUMO

RNA-seq is a promising technology to re-sequence protein coding genes for the identification of single nucleotide variants (SNV), while simultaneously obtaining information on structural variations and gene expression perturbations. We asked whether RNA-seq is suitable for the detection of driver mutations in T-cell acute lymphoblastic leukemia (T-ALL). These leukemias are caused by a combination of gene fusions, over-expression of transcription factors and cooperative point mutations in oncogenes and tumor suppressor genes. We analyzed 31 T-ALL patient samples and 18 T-ALL cell lines by high-coverage paired-end RNA-seq. First, we optimized the detection of SNVs in RNA-seq data by comparing the results with exome re-sequencing data. We identified known driver genes with recurrent protein altering variations, as well as several new candidates including H3F3A, PTK2B, and STAT5B. Next, we determined accurate gene expression levels from the RNA-seq data through normalizations and batch effect removal, and used these to classify patients into T-ALL subtypes. Finally, we detected gene fusions, of which several can explain the over-expression of key driver genes such as TLX1, PLAG1, LMO1, or NKX2-1; and others result in novel fusion transcripts encoding activated kinases (SSBP2-FER and TPM3-JAK2) or involving MLLT10. In conclusion, we present novel analysis pipelines for variant calling, variant filtering, and expression normalization on RNA-seq data, and successfully applied these for the detection of translocations, point mutations, INDELs, exon-skipping events, and expression perturbations in T-ALL.


Assuntos
Sequência de Bases/genética , Regulação Leucêmica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Transcriptoma/genética , Adolescente , Adulto , Idoso , Linhagem Celular Tumoral , Criança , Pré-Escolar , Exoma/genética , Feminino , Fusão Gênica , Humanos , Mutação INDEL/genética , Lactente , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células T Precursoras/etiologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia
8.
Haematologica ; 100(10): 1301-10, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26206799

RESUMO

T-cell acute lymphoblastic leukemia is caused by the accumulation of multiple oncogenic lesions, including chromosomal rearrangements and mutations. To determine the frequency and co-occurrence of mutations in T-cell acute lymphoblastic leukemia, we performed targeted re-sequencing of 115 genes across 155 diagnostic samples (44 adult and 111 childhood cases). NOTCH1 and CDKN2A/B were mutated/deleted in more than half of the cases, while an additional 37 genes were mutated/deleted in 4% to 20% of cases. We found that IL7R-JAK pathway genes were mutated in 27.7% of cases, with JAK3 mutations being the most frequent event in this group. Copy number variations were also detected, including deletions of CREBBP or CTCF and duplication of MYB. FLT3 mutations were rare, but a novel extracellular mutation in FLT3 was detected and confirmed to be transforming. Furthermore, we identified complex patterns of pairwise associations, including a significant association between mutations in IL7R-JAK genes and epigenetic regulators (WT1, PRC2, PHF6). Our analyses showed that IL7R-JAK genetic lesions did not confer adverse prognosis in T-cell acute lymphoblastic leukemia cases enrolled in the UK ALL2003 trial. Overall, these results identify interconnections between the T-cell acute lymphoblastic leukemia genome and disease biology, and suggest a potential clinical application for JAK inhibitors in a significant proportion of patients with T-cell acute lymphoblastic leukemia.


Assuntos
Epigênese Genética , Janus Quinases/genética , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Receptores de Interleucina-7/genética , Adulto , Criança , Evolução Clonal/genética , Variações do Número de Cópias de DNA , Feminino , Perfilação da Expressão Gênica , Regulação Leucêmica da Expressão Gênica , Estudos de Associação Genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Janus Quinases/metabolismo , Masculino , Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células T Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Prognóstico , Receptores de Interleucina-7/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais
9.
Int J Cancer ; 134(5): 1112-22, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23959973

RESUMO

Endometrial stromal sarcomas (ESSs) are a genetically heterogeneous group of rare uterine neoplasms that are commonly driven by recurrent gene rearrangements. In conventional low-grade ESS, JAZF1-SUZ12, PHF1-JAZF1, EPC1-PHF1 and MEAF6-PHF1, and recently described ZC3H7-BCOR chimeric fusions have been reported in > 50% of cases. Conversely, oncogenic t(10;17)(q22;p13) translocation yields YWHAE-FAM22A/B chimeric proteins that are associated with histologically high-grade and clinically more aggressive ESS. Integrating whole-transcriptome paired-end RNA sequencing with fluorescence in situ hybridization (FISH) and banding cytogenetics, we identified MBTD1 (malignant brain tumor domain-containing 1) and CXorf67 (chromosome X open reading frame 67) as the genes involved in the novel reciprocal t(X;17)(p11.2;q21.33) translocation in two independent low-grade ESS of classical histology. The presence of the MBTD1-CXorf67 fusion transcript was validated in both cases using reverse-transcription polymerase chain reaction followed by Sanger sequencing. A specific FISH assay was developed to detect the novel t(X;17) translocation in formalin-fixed paraffin-embedded material, and resulted in identification of an additional low-grade ESS case positive for the MBTD1-CXorf67 fusion among 25 uterine stromal tumors [14 ESS and 11 undifferentiated endometrial sarcomas (UESs)] that were negative for JAZF1 and YWHAE rearrangements. Gene expression profiles of seven ESS (including three with YWHAE and two with JAZF1 rearrangements) and four UES without specific chromosomal aberrations indicated clustering of tumors with MBTD1-CXorf67 fusion together with low-grade JAZF1-associated ESS. The chimeric MBTD1-CXorf67 fusion identifies yet another cytogenetically distinct subgroup of low-grade ESS and offers the opportunity to shed light on the functions of two poorly characterized genes.


Assuntos
Proteínas Cromossômicas não Histona/genética , Neoplasias do Endométrio/genética , Proteínas de Fusão Oncogênica/genética , Sarcoma do Estroma Endometrial/genética , Adulto , Cromossomos Humanos Par 17 , Cromossomos Humanos X , Hibridização Genômica Comparativa , Neoplasias do Endométrio/patologia , Feminino , Fusão Gênica , Humanos , Pessoa de Meia-Idade , Gradação de Tumores , Recidiva , Sarcoma do Estroma Endometrial/patologia , Translocação Genética
10.
Blood ; 119(19): 4476-9, 2012 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-22438252

RESUMO

The protein tyrosine phosphatase CD45, encoded by the PTPRC gene, is well known as a regulator of B- and T-cell receptor signaling. In addition, CD45 negatively regulates JAK family kinases downstream of cytokine receptors. Here, we report the presence of CD45 inactivating mutations in T-cell acute lymphoblastic leukemia. Loss-of-function mutations of CD45 were detected in combination with activating mutations in IL-7R, JAK1, or LCK, and down-regulation of CD45 expression caused increased signaling downstream of these oncoproteins. Furthermore, we demonstrate that down-regulation of CD45 expression sensitizes T cells to cytokine stimulation, as observed by increased JAK/STAT signaling, whereas overexpression of CD45 decreases cytokine-induced signaling. Taken together, our data identify a tumor suppressor role for CD45 in T-cell acute lymphoblastic leukemia.


Assuntos
Antígenos Comuns de Leucócito/genética , Mutação , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Sequência de Aminoácidos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Genes Supressores de Tumor/efeitos dos fármacos , Genes Supressores de Tumor/fisiologia , Células HEK293 , Humanos , Janus Quinases/metabolismo , Antígenos Comuns de Leucócito/antagonistas & inibidores , Antígenos Comuns de Leucócito/metabolismo , Mutação/fisiologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , RNA Interferente Pequeno/farmacologia , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
11.
Haematologica ; 99(12): 1808-16, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25344525

RESUMO

Genetic studies in T-cell acute lymphoblastic leukemia have uncovered a remarkable complexity of oncogenic and loss-of-function mutations. Amongst this plethora of genetic changes, NOTCH1 activating mutations stand out as the most frequently occurring genetic defect, identified in more than 50% of T-cell acute lymphoblastic leukemias, supporting a role as an essential driver for this gene in T-cell acute lymphoblastic leukemia oncogenesis. In this study, we aimed to establish a comprehensive compendium of the long non-coding RNA transcriptome under control of Notch signaling. For this purpose, we measured the transcriptional response of all protein coding genes and long non-coding RNAs upon pharmacological Notch inhibition in the human T-cell acute lymphoblastic leukemia cell line CUTLL1 using RNA-sequencing. Similar Notch dependent profiles were established for normal human CD34(+) thymic T-cell progenitors exposed to Notch signaling activity in vivo. In addition, we generated long non-coding RNA expression profiles (array data) from ex vivo isolated Notch active CD34(+) and Notch inactive CD4(+)CD8(+) thymocytes and from a primary cohort of 15 T-cell acute lymphoblastic leukemia patients with known NOTCH1 mutation status. Integration of these expression datasets with publicly available Notch1 ChIP-sequencing data resulted in the identification of long non-coding RNAs directly regulated by Notch activity in normal and malignant T cells. Given the central role of Notch in T-cell acute lymphoblastic leukemia oncogenesis, these data pave the way for the development of novel therapeutic strategies that target hyperactive Notch signaling in human T-cell acute lymphoblastic leukemia.


Assuntos
Biomarcadores Tumorais/genética , Mutação/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , RNA Longo não Codificante/genética , Receptor Notch1/metabolismo , Timócitos/metabolismo , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Biomarcadores Tumorais/metabolismo , Western Blotting , Estudos de Casos e Controles , Transformação Celular Neoplásica/patologia , Células Cultivadas , Imunoprecipitação da Cromatina , Estudos de Coortes , Inibidores Enzimáticos/farmacologia , Seguimentos , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor Notch1/antagonistas & inibidores , Receptor Notch1/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Timócitos/citologia , Timócitos/efeitos dos fármacos
12.
Virchows Arch ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37731064

RESUMO

In addition to morphologic analysis, molecular diagnostic work up of Spitz tumours is often of great value for their accurate diagnosis/classification. Nowadays, next-generation sequencing (NGS) is the predominant screening method in molecular diagnostics. Up to 80% of these melanocytic neoplasms comprise gene fusions as genetic anomalies for which the driver codes for a protein harbouring a kinase domain. However, because of the variety of fusion partners the use of PCR-based targeted enrichment NGS methods is not recommended. We describe a series of four Spitz tumour samples in which distinct gene fusions were detected by hybridisation-based capture NGS (TPM3::ALK, LIMA1::ROS1, LRRFIP2::ROS1 and MYO5A::RET). Two of these fusions are not previously described. All 4 fusions were confirmed by reverse transcription-PCR. These findings demonstrate the need for molecular analysis that can detect unknown fusions in Spitz neoplasms for optimal diagnosis.

14.
Ecotoxicology ; 21(2): 475-84, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22080432

RESUMO

The flatworm species Schmidtea mediterranea and Macrostomum lignano have become new and innovative model organisms in stem cell, regeneration and tissue homeostasis research. Because of their unique stem cell system, (lab) technical advantages and their phylogenetic position within the Metazoa, they are also ideal candidate model organisms for toxicity assays. As stress and biomarker screenings are often performed at the transcriptional level, the aim of this study was to establish a set of reference genes for qPCR experiments for these two model organisms in different stress situations. We examined the transcriptional stability of nine potential reference genes (actb, tubb, ck2, cox4, cys, rpl13, gapdh, gm2ap, plscr1) to assess those that are most stable during altered stress conditions (exposure to carcinogenic metals and salinity stress). The gene expression stability was evaluated by means of geNorm and NormFinder algorithms. Sets of best reference genes in these analyses varied between different stress situations, although gm2ap and actb were stably transcribed during all tested combinations. In order to demonstrate the impact of bad normalisation, the stress-specific gene hsp90 was normalised to different sets of reference genes. In contrast to the normalisation according to GeNorm and NormFinder, normalisation of hsp90 in Macrostomum lignano during cadmium stress did not show a significant difference when normalised to only gapdh. On the other hand an increase of variability was noticed when normalised to all nine tested reference genes together. Testing appropriate reference genes is therefore strongly advisable in every new experimental condition.


Assuntos
Expressão Gênica/efeitos dos fármacos , Genes Essenciais/efeitos dos fármacos , Metais/toxicidade , Platelmintos/genética , Salinidade , Poluentes Químicos da Água/toxicidade , Animais , Cloreto de Cádmio/toxicidade , Cromo/toxicidade , Perfilação da Expressão Gênica , Reação em Cadeia da Polimerase/métodos , Cloreto de Sódio/toxicidade , Estresse Fisiológico/efeitos dos fármacos , Testes de Toxicidade
15.
Cancers (Basel) ; 14(10)2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35626061

RESUMO

The use of targeted Next Generation Sequencing (NGS) for the diagnostic screening of somatic variants in solid tumor samples has proven its high clinical value. Because of the large number of ongoing clinical trials for a multitude of variants in a growing number of genes, as well as the detection of proven and emerging pan-cancer biomarkers including microsatellite instability (MSI) and tumor mutation burden (TMB), the currently employed diagnostic gene panels will become vastly insufficient in the near future. Here, we describe the validation and implementation of the hybrid capture-based comprehensive TruSight Oncology (TSO500) assay that is able to detect single-nucleotide variants (SNVs) and subtle deletions and insertions (indels) in 523 tumor-associated genes, copy-number variants (CNVs) of 69 genes, fusions with 55 cancer driver genes, and MSI and TMB. Extensive validation of the TSO500 assay was performed on DNA or RNA from 170 clinical samples with neoplastic content down to 10%, using multiple tissue and specimen types. Starting with 80 ng DNA and 40 ng RNA extracted from formalin-fixed and paraffine-embedded (FFPE) samples revealed a precision and accuracy >99% for all variant types. The analytical sensitivity and specificity were at least 99% for SNVs, indels, CNVs, MSI, and gene rearrangements. For TMB, only values around the threshold could yield a deviating outcome. The limit-of-detection for SNVs and indels was well below the set threshold of 5% variant allele frequency (VAF). This validated comprehensive genomic profiling assay was then used to screen 624 diagnostic samples, and its success rate for adoption in a clinical diagnostic setting of broad solid tumor screening was assessed on this cohort.

16.
Lung Cancer ; 170: 1-10, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35689896

RESUMO

OBJECTIVES: Immune checkpoint inhibitors (ICIs) improved outcomes in non-small cell lung cancer (NSCLC) patients. We report the predictive utility of human leukocyte antigen class I (HLA-I) diversity and tumor mutational burden (TMB) by comprehensive next-generation sequencing. METHODS: 126 patients were included. TMB high was defined as ≥ 10 nonsynonymous mutations/Mb. Patients exhibit high HLA-I diversity if at least one locus was in the upper 15th percentile for DNA alignment scores. RESULTS: No difference in response rate (RR; 44.4% versus 30.9%; p = 0.1741) or 6-month survival rate (SR; 75.6% versus 77.8%; p = 0.7765) was noted between HLA-I high diversity and low diversity patients. HLA-I high diversity patients did significantly more often exhibit durable clinical benefit (DCB), defined as response or stable disease lasting minimally 6 months (64.4% [29/45] versus 43.2% [35/81]; p = 0.0223). TMB high patients exhibited higher RR (49.1% versus 25.4%; p = 0.0084) and SR 6 months after start ICI (85.5% versus 70.4%; p = 0.0468) than TMB low patients. The proportion of patients with DCB, did not differ significantly between TMB high and low subgroups (60.0% [33/55] versus 42.3% [30/71]; p = 0.0755). Patients with combined dual high TMB and HLA-I diversity had higher RR (63.2% versus 22.2%; p = 0.0033), but SR at 6 months did not differ significantly (84.2% versus 64,4%; p = 0.1536). A significantly higher rate of patients experienced DCB in dual high compared to the dual low group (73.7% [14/19] versus 35.6% [16/45]; p = 0.0052). Triple positive patients (high TMB and HLA-I diversity and PD-L1 positive) had higher RR (63.6% versus 0.0%; p = 0.0047) and SR at 6 months (100% versus 66.7%; p = 0.0378) compared to triple-negative patients. CONCLUSION: HLA-I diversity was able to predict durable clinical benefit in ICI treated NSCLC patients, but failed to confirm as a predictor of response or survival. TMB confirmed as a predictive biomarker.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Antígeno B7-H1/genética , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Antígenos HLA , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação
17.
Cancers (Basel) ; 14(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35205782

RESUMO

Multiple myeloma (MM), or Kahler's disease, is an incurable plasma cell (PC) cancer in the bone marrow (BM). This malignancy is preceded by one or more asymptomatic precursor conditions, monoclonal gammopathy of undetermined significance (MGUS) and/or smoldering multiple myeloma (SMM). The molecular mechanisms and exact cause of this progression are still not completely understood. In this study, the mutational profile underlying the progression from low-intermediate risk myeloma precursor conditions to MM was studied in serial BM smears. A custom capture-based sequencing platform was developed, including 81 myeloma-related genes. The clonal evolution of single nucleotide variants and short insertions and deletions was studied in serial BM smears from 21 progressed precursor patients with a median time of progression of six years. From the 21 patients, four patients had no variation in one of the 81 studied genes. Interestingly, in 16 of the 17 other patients, at least one variant present in MM was also detected in its precursor BM, even years before progression. Here, the variants were present in the pre-stage at a median of 62 months before progression to MM. Studying these paired BM samples contributes to the knowledge of the evolutionary genetic landscape and provides additional insight into the mutational behavior of mutant clones over time throughout progression.

18.
Nat Commun ; 12(1): 1861, 2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33767199

RESUMO

Multiple myeloma (MM) is consistently preceded by precursor conditions recognized clinically as monoclonal gammopathy of undetermined significance (MGUS) or smoldering myeloma (SMM). We interrogate the whole genome sequence (WGS) profile of 18 MGUS and compare them with those from 14 SMMs and 80 MMs. We show that cases with a non-progressing, clinically stable myeloma precursor condition (n = 15) are characterized by later initiation in the patient's life and by the absence of myeloma defining genomic events including: chromothripsis, templated insertions, mutations in driver genes, aneuploidy, and canonical APOBEC mutational activity. This data provides evidence that WGS can be used to recognize two biologically and clinically distinct myeloma precursor entities that are either progressive or stable.


Assuntos
Genoma Humano/genética , Gamopatia Monoclonal de Significância Indeterminada/genética , Mieloma Múltiplo/genética , Mieloma Múltiplo Latente/genética , Variações do Número de Cópias de DNA/genética , Progressão da Doença , Humanos , Gamopatia Monoclonal de Significância Indeterminada/patologia , Mieloma Múltiplo/patologia , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Mieloma Múltiplo Latente/patologia , Sequenciamento Completo do Genoma
19.
Nat Commun ; 12(1): 4164, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34230493

RESUMO

Spi-1 Proto-Oncogene (SPI1) fusion genes are recurrently found in T-cell acute lymphoblastic leukemia (T-ALL) cases but are insufficient to drive leukemogenesis. Here we show that SPI1 fusions in combination with activating NRAS mutations drive an immature T-ALL in vivo using a conditional bone marrow transplant mouse model. Addition of the oncogenic fusion to the NRAS mutation also results in a higher leukemic stem cell frequency. Mechanistically, genetic deletion of the ß-catenin binding domain within Transcription factor 7 (TCF7)-SPI1 or use of a TCF/ß-catenin interaction antagonist abolishes the oncogenic activity of the fusion. Targeting the TCF7-SPI1 fusion in vivo with a doxycycline-inducible knockdown results in increased differentiation. Moreover, both pharmacological and genetic inhibition lead to down-regulation of SPI1 targets. Together, our results reveal an example where TCF7-SPI1 leukemia is vulnerable to pharmacological targeting of the TCF/ß-catenin interaction.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Proteínas de Membrana/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Fator 1 de Transcrição de Linfócitos T/metabolismo , Transativadores/metabolismo , beta Catenina/metabolismo , Animais , Transplante de Medula Óssea , Carcinogênese/genética , Modelos Animais de Doenças , Feminino , GTP Fosfo-Hidrolases/genética , Células HEK293 , Humanos , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Oncogenes , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas/genética , Fator 1 de Transcrição de Linfócitos T/genética , Linfócitos T/metabolismo , Transativadores/genética , Transcriptoma , beta Catenina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA