Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 1385, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29362387

RESUMO

Glucocerebrosidase (GBA1) mutations are the major genetic risk factor for Parkinson's Disease (PD). The pathogenic mechanism is still unclear, but alterations in lysosomal-autophagy processes are implicated due to reduction of mutated glucocerebrosidase (GCase) in lysosomes. Wild-type GCase activity is also decreased in sporadic PD brains. Small molecule chaperones that increase lysosomal GCase activity have potential to be disease-modifying therapies for GBA1-associated and sporadic PD. Therefore we have used mouse cortical neurons to explore the effects of the chaperone ambroxol. This chaperone increased wild-type GCase mRNA, protein levels and activity, as well as increasing other lysosomal enzymes and LIMP2, the GCase transporter. Transcription factor EB (TFEB), the master regulator of the CLEAR pathway involved in lysosomal biogenesis was also increased upon ambroxol treatment. Moreover, we found macroautophagy flux blocked and exocytosis increased in neurons treated with ambroxol. We suggest that ambroxol is blocking autophagy and driving cargo towards the secretory pathway. Mitochondria content was also found to be increased by ambroxol via peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1-α). Our data suggest that ambroxol, besides being a GCase chaperone, also acts on other pathways, such as mitochondria, lysosomal biogenesis, and the secretory pathway.


Assuntos
Ambroxol/farmacologia , Córtex Cerebral/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Neurônios/metabolismo , Animais , Autofagia/efeitos dos fármacos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Córtex Cerebral/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Inativação de Genes , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Regulação para Cima
2.
Brain Res ; 1036(1-2): 1-6, 2005 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-15725395

RESUMO

The antioxidant glutathione (GSH) plays an important role in protecting the mitochondrial electron transport chain (ETC) from damage by oxidative stress in astrocytes and neurones. Neurones co-cultured with astrocytes have greater GSH levels, compared to neurones cultured alone, leading to the hypothesis that astrocytes play a key role in brain GSH metabolism by supplying essential GSH precursors to neurones. A previous study has postulated that damage to the ETC following exposure to reactive nitrogen species (RNS) is less in co-cultured neurones, compared to neurones cultured alone, because of the greater GSH levels in the former cells. To investigate this further, primary culture rat neurones were co-cultured with either rat astrocytes activated with IFN-gamma and LPS to produce NO, or NO-generating astrocytes that had been depleted of intracellular GSH by 87% following incubation with the GSH synthesis inhibitor L-buthionine-S,R-sulfoximine (L-BSO). Neurones incubated with NO-generating astrocytes depleted of GSH were unable to elevate GSH levels, unlike neurones co-cultured with NO-generating astrocytes. Complexes II + III and IV of the neuronal ETC were significantly inhibited following exposure to NO-generating astrocytes depleted of GSH. No ETC damage was observed in neurones co-cultured with NO-generating astrocytes. Although neurones co-cultured with GSH depleted astrocytes did not increase cellular GSH levels, the activity of glutamate cysteine ligase (GCL), the rate-limiting enzyme of GSH synthesis, was increased by 218%, compared to neurones cultured with control astrocytes. This suggests that neuronal GCL activity could be modulated when GSH metabolism is inhibited in neighboring astrocytes.


Assuntos
Astrócitos/metabolismo , Glutamato-Cisteína Ligase/metabolismo , Glutationa/metabolismo , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/fisiologia , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Comunicação Celular/efeitos dos fármacos , Comunicação Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Complexo de Proteínas da Cadeia de Transporte de Elétrons/efeitos dos fármacos , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Inibidores Enzimáticos/farmacologia , Glutationa/antagonistas & inibidores , Mediadores da Inflamação/farmacologia , Neurônios/efeitos dos fármacos , Óxido Nítrico/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
3.
Exp Neurol ; 219(1): 266-73, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19500570

RESUMO

Mutations of the PINK1 gene are a cause of autosomal recessive Parkinson's disease (PD). PINK1 encodes a mitochondrial kinase of unknown function which is widely expressed in both neuronal and non-neuronal cells. We have studied fibroblast cultures from four family members harbouring the homozygous p.Q456X mutation in PINK1, three of their wild-type relatives, one individual with the homozygous p.V170G mutation and five independent controls. Results showed bioenergetic abnormalities involving decreased activities of complexes I and IV along with increased activities of complexes II and III in the missense p.V170G mutant. There were increased basal levels of mitochondrial superoxide dismutase in these cells and an exaggerated increase of reduced glutathione in response to paraquat-induced free radical formation. Furthermore, swollen and enlarged mitochondria were observed in this sample. In the p.Q456X nonsense mutants, the respiratory chain enzymes were unaffected, but ATP levels were significantly decreased. These results confirm that mutations of PINK1 cause abnormal mitochondrial morphology, bioenergetic function and oxidative metabolism in human tissues but suggest that the biochemical consequences may vary between mutations.


Assuntos
Metabolismo Energético/genética , Predisposição Genética para Doença/genética , Doenças Mitocondriais/genética , Mutação/genética , Doença de Parkinson/genética , Proteínas Quinases/genética , Trifosfato de Adenosina/metabolismo , Idoso , Células Cultivadas , Códon sem Sentido/genética , Análise Mutacional de DNA , Transporte de Elétrons/genética , Feminino , Fibroblastos/metabolismo , Marcadores Genéticos/genética , Testes Genéticos , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mutação de Sentido Incorreto/genética , Estresse Oxidativo/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Superóxido Dismutase/genética
4.
J Neurochem ; 86(1): 228-37, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12807442

RESUMO

Primary culture rat astrocytes exposed to the long acting nitric oxide donor (Z)-1-[2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA-NO) for 24 h approximately double their concentration of glutathione (GSH) and show no sign of cell death. In contrast, GSH was depleted by 48%, and significant loss of mitochondrial respiratory chain complex activity and cell death were observed in primary culture rat neurones subjected to DETA-NO for 18 h. Northern blot analysis suggested that mRNA amounts of both subunits of glutamate-cysteine ligase (GCL), the rate-limiting enzyme in GSH synthesis, were elevated in astrocytes following nitric oxide (NO) exposure. This correlated with an increase in astrocytic GCL activity. Neurones on the other hand did not exhibit increased GCL activity when exposed to NO. In addition, the rate of GSH efflux was doubled and gamma-glutamyltranspeptidase (gamma-GT) activity was increased by 42% in astrocytes treated with NO for 24 h. These results suggest that astrocytes, but not neurones, up-regulate GSH synthesis as a defence mechanism against excess NO. It is possible that the increased rate of GSH release and activity of gamma-GT in astrocytes may have important implications for neuroprotection in vivo by optimizing the supply of GSH precursors to neurones in close proximity.


Assuntos
Astrócitos/metabolismo , Glutationa/metabolismo , Mitocôndrias/efeitos dos fármacos , Neurônios/metabolismo , Óxido Nítrico/metabolismo , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Células Cultivadas , Transporte de Elétrons/efeitos dos fármacos , Glutamato-Cisteína Ligase/efeitos dos fármacos , Glutamato-Cisteína Ligase/genética , Glutamato-Cisteína Ligase/metabolismo , Mitocôndrias/metabolismo , Doenças Neurodegenerativas/etiologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores , Óxido Nítrico/farmacologia , Doadores de Óxido Nítrico/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Triazenos/farmacologia , gama-Glutamiltransferase/efeitos dos fármacos , gama-Glutamiltransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA